

Computer Vision 9th May 2023, Day2, Session 2B

sambath.narayanan@gmail.com

Acknowledgement

Thankyou !

- In this presentation we have used many tools, libraries and images from NVIDIA. We acknowledge the same.
- We built the HandPose demo in our lab using the youtube video provided by make2Explore, https://youtu.be/FPXVC7WrC4s
- In other places, if we use some information, we provide the URL for the same
- If we missed out something, we will correct the same

THIAGARAJAR COLLEGE OF ENGINEERING, MADURAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Online Faculty Development Program "Artificial Intelligence for Edge Computing", 8th-12th May, 2023.

Date	10.00am-	10.30 am - 11.30 am*		11.45am -1.15 pm *		2.15 pm-4.45 pm *
	10.30 am			-		
08.05.2023		Session 1A		Session 1B		Session 1C
Monday		AI for UAVs -		AI for UAVs - Opportunities		Internet of Things Edge Analytics
	Inaugural	Opportunities and		and Challenges		
	Function	Challenges				
		Ramesh Naidu. L		Ramesh Naidu. L		Industry Expert
00.05.0003		CDAC		CLAC	4	a 1 aa
09.05.2025	Session 2A		B R E A K	Session 2B	в	Session 2C
Tuesday	AI Accelerated Devices			Computer Vision		MiL models for Edge Computing:
	Sambath Narayanan P			Sambath Narayanan P	R	Architecture and Use-cases
	Dataever Consulting			Dataever Consulting	E	NIT Andhravradesh
10.05.2023	Session 3A			Session 3B	K	Session 3C
Wednesday	Edge Computing-Thing Speak			Edge Computing-MatLab		Digital Twin
	Akhil Gopinath			Akhil Gopinath		Akhil Gopinath
	Mathworks			Mathworks		Mathworks
11.05.2023		Session 4A		Session 4B	1	Session 4C
Thursday	Industrial I	internet of Things (IIoT)		Analytics in IIoT		IIoT Use-cases-Demonstration
				-		
	Supriya	Jena & Sunil G Kumar		Rajesh Sharma		Supriya Jena & Sunil G Kumar
10.05.0002		IBM Courier 5A		IBM	-	IBM
12.05.2023	E.	Session 5A		Session 5B		Session 5C
Friday	E	ige intelligence		Data Anarytics at Edge		Commuting & Valadiatory Errortian
	Sunaarave	Kyndryl		sunaaravein (sunaar) snanmugam Kyndryl		Computing & Valedictory Function

(* Subject to change based on the Session engagement)

Overall Session Agenda

Computer Vision(CV)

- Why Computer Vision
- What is Computer Vision
- CV Frameworks of importance
- Data sets
- Computer Vision Models
- State of the art in Computer Vision

CV applications /use cases

- Manufacturing
- Automotive
- Healthcare
- Surveillance

CV Demos

- Basic CV Demos
- Industrial Welding / Segmentation
- Healthcare Covid
- Video Surveillance Car burglary

Why Computer Vision(CV)?

CNN DL Model vs. Skin specialist

Skin specialist

 Having additional information improved the doctor's performance where the mean specificity 75.7%, and the mean ROC AUC 0.82.

CNN performance

 on the same reader study level-II test showed, a specificity of 90%, and an <u>ROC AUC of 0.95.</u>

How the Afghan Girl was Identified by Her Iris Patterns

"How the Afghan Girl was Identified by Her Iris Patterns"

Can Al address Healthcare industry Challenges ?

• Radiologist is a medical practitioner trained in analyzing MRI or CT scan, X Ray and using the analysis to diagnose medical conditions

Number of scans professionals have to analyze = 1,000 a day <u>This can lead to lengthy delays between scan and treatment</u> <u>– even when someone needs urgent care</u>.

PRE COVID Statistics Global shortage of radiologists

> Radiologists •US – 1: 10,000 •Singapore – 1: 20,000 •Japan – 1: 35,000 •India - 1: 100,000 •Nigeria – 1: 400,000 •Tanzania – 1: 1,300,000

What is Computer Vision(CV)?

Computer Vision is the most important branch of Al

Neural networks and Deep Learning are Making Computer Vision More Capable of Replicating Human Vision

"Machine Vision Fundamentals, How to Make Robots See". NASA Tech Briefs Magazine. 35 (6)

Computer Vision

Intersection of Vision and Graphics

Image/video using models constructed with the aid of geometry, physics and statistics

truck 0.97

counts: 3

"Machine Vision Fundamentals, How to Make Robots See". *NASA Tech Briefs Magazine*. **35** (6)

kite: 92%

kite: 99%

kite: 54%

Dimension Data from Real World

Meaningful

kite: 82% kite: 90%

person: 54‰

kite: 97%

persperson: 97%

person: 99%

person: 86%

person: 99%

kite: 85%

person: 76%

Computer Vision tasks

car 0.79

Use Cases of Computer Vision in Manufacturing

- Measurement / Gauging
- Guidance, part tracking, and identification
- Optical character recognition and verification (OCR/OCV)
- Barcode / 2D readers and Pattern recognition
- Vision guided Robotics
- Quality Assurance package / part inspection / defect detection

Multi-access Edge Computing (MEC),

- Multi-access Edge Computing (MEC), also known as Mobile Edge Computing, is a key technology that enables mobile network operators to leverage edge-cloud benefits using their 5G networks.
- Following the concept of edge computing, MEC is located in close proximity to the connected devices and end-users and enables extremely low latency and high bandwidth while always enabling applications to leverage cloud capabilities as necessary.

Deep Stream 6.2

- DeepStream is a streaming analytic toolkit to build Alpowered applications.
- It takes the streaming data as input from USB/CSI camera, video from file or streams over RTSP?
- uses AI and computer vision to generate insights from pixels for better understanding of the environment.
- DeepStream SDK can be the foundation layer for a number of video analytic solutions like understanding traffic and pedestrians in smart city,

DEEPSTREAM SDK

Deepstream Demo

ssh -Y aijuser@dhruv

source go2deepstream

your current directory will be as follows:

aijuser@dhruv:~/EDGE-AI/GSTREAM/opt/nvidia/deepstream/deepstream-6.2/samples/configs/deepstream-app

Execute the following:

\$ deepstream-app -c source4_1080p_dec_inferresnet_tracker_sgie_tiled_display_int8.yml

Left click on the video to see the details

Type q on the video to quit

Computer Vision Datasets

Name	# Images (trainval)	# Classes	Last updated
ImageNet	450k	200	2015
сосо	120K	80	2014
Pascal VOC	12k	20	2012
Oxford-IIIT Pet	7K	37	2012
KITTI Vision	7K	3	2014

Data set COCO (Common Objects in Context)

COCO is a large-scale object detection, segmentation, and captioning dataset.

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- 5 captions per image
- 250,000 people with keypoints

Pascal VOC (Visual Object Classes):

Large number of images collected from various sources, covering 20 object categories commonly encountered in everyday scenes

primarily used for object detection and segmentation tasks

- Pascal VOC is a dataset primarily used for object detection and segmentation tasks.
- The dataset provides detailed annotations, including object bounding boxes and class labels, making it suitable for training and evaluating object detection models.

Imagenet, a well known CV dataset

14 million images categorized into more than 20,000 object categories

one of the largest and most well-known computer vision datasets. The ImageNet dataset covers a wide range of objects and scenes, and it has been widely used for various computer vision tasks, including object recognition and image classification.

Computer Vision Models of importance

ResNet, a Deep CNN

ResNet models have achieved state-of-the-art performance on various computer vision tasks, including image classification, object detection, and semantic segmentation

Figure 2. Residual learning: a building block.

- ResNet is a deep convolutional neural network architecture used in computer vision.
- It introduced the concept of residual learning, which enables the training of very deep neural networks by addressing the vanishing gradient problem..

YOLO

Popular for applications requiring fast and accurate real-time object detection, such as autonomous vehicles, video surveillance, and robotics.

- real-time object detection model known for its speed and accuracy.
- Traditional object detection models use region proposal algorithms.
- YOLO takes a single network pass over the image and directly predicts bounding boxes and class probabilities for detected objects.

Mask R-CNN

Popular for pixel-level instance segmentation capabilities. It can detect objects and generate accurate object masks simultaneously

- Mask R-CNN (Region-based Convolutional Neural Network):
- Mask R-CNN is an extension of the Faster R-CNN object detection model, which also includes pixel-level instance segmentation capabilities. It can detect objects and generate accurate object masks simultaneously.
- Mask R-CNN has been widely adopted for various tasks, such as instance segmentation, object detection, and key point detection, where precise object boundaries and pixel-level details are required.

Use Cases of Computer Vision in Manufacturing

• Quality Control:

 Defect detection is an essential part of the manufacturing process. When running an assembly line where millions of products are made, defects need to be caught in real time. Devices that use edge computing can make decisions in microseconds, catch defects instantly, and alert staff. This capability provides a significant advantage to factories as it can reduce waste and improve manufacturing efficiency.

• Worker Safety:

 Industrial workers often operate heavy machinery and handle hazardous materials at manufacturing sites. Using a network of cameras and sensors equipped with AI-enabled video analytics, manufacturers can identify workers in unsafe conditions and quickly intervene to prevent accidents. Edge computing is critical to worker safety since life-saving decisions need to be made in real time.

Embedded Vision Camera

Show and Tell Computer Vision

Thresholding example

- Observe the Cherry Fruit image
- Background is black
- Healthy fruit is bright
- Spoiled portion is medium dark
- Histogram shows two cherry regions (black background has been removed)

Thresholding Demo

login to aijuser@dhruv

ssh –Y aijuser@dhruv

source go2threshholding

cd /home/aijuser/EDGE-AI/THRESH-HOLDING

source go-run

You will see various image windows processed using different thresholding algorithm

How-to-check-installed-Python-version?

Check your Python version

python --version
python 3.8.3

ensure it is at least Python 3.7 or above

How-to-install-opency-for-python-in-linux

pip install opencv-contrib-python

Defaulting to user installation because normal site-packages is not writeable Collecting opency-contrib-python

Using cached opencv contrib python-4.5.2.52-cp36-cp36mmanylinux2014_x86_64.whl (57.4 MB)

Requirement already satisfied: numpy>=1.13.3 in /home/sambath/.local/lib/python3.6/site-packages (from opencv-contrib-python) (1.19.5)

Installing collected packages: opencv-contrib-python

Successfully installed opencv-contrib-python-4.5.2.52

This installs main module as well as community-contributed module For more details:

https://www.geeksforgeeks.org/how-to-install-opencv-for-python-in-linux/

How-to-check-installed-opency-version?

python
>>>import cv2
>>>cv2.__version__
`4.5.1'
ctrl+D

Play a video using the OpenCV Python

```
# importing libraries
import cv2
import numpy as np
# Create a VideoCapture object and read from input file
cap = cv2.VideoCapture('dog.mp4')
# Check if camera opened successfully
if (cap.isOpened() == False):
print("Error opening video file")
# Read until video is completed
while(cap.isOpened()):
# Capture frame-by-frame
ret, frame = cap.read()
if ret == True:
        # Display the resulting frame
        cv2.imshow('Frame', frame)
        # Press Q on keyboard to exit
        if cv2.waitKey(25) & 0xFF == ord('q'):
        break
# Break the loop
else:
        break
# When everything done, release
# the video capture object
cap.release()
# Closes all the frames
cv2.destroyAllWindows()
```


Image Contouring demo

login to aijuser@dhruv

source go2contour

python3 contours.py

What is an image contour?

Identify structural outlines of objects in an image Helps in identifying the shape of the object

Bit wise operations in CV

- Bitwise operations can be used in image manipulations
- These bitwise techniques are used in many computer vision applications like for
 - <u>creating masks</u> of the image
 - adding watermarks to the image
 - creating a new image using these bitwise operators

Bit wise operations in CV

- These operations work on the individual pixels in the image to give accurate results compared with other morphing techniques in OpenCV
 - Bitwise AND
 - pixels that are common with image 1 and image 2 and remaining pixels are removed from the output
 - Bitwise OR
 - disjunction of the pixels in both images.we will not eliminate pixels but it merges both images.
 - Bitwise NOT
 - replaces the white pixels with black pixels and vice versa
 - Bitwise XOR
 - inverts the pixels which are intersected in image 1 & image 2 and the rest of the pixels remains the same.

Bit wise operations

.....

cd ~/EDGE-AI/COMPUTER-VISION/opencv-course-master/Section2-Advanced python3 masking_new.py code snippet - portion of python script

```
# cv2.bitwise xor is applied over the
# image inputs with applied parameters
# uncomment corresponding dest * & cv2.imshow statements
#dest xor = cv2.bitwise xor(img1, img2, mask = None)
#dest and = cv2.bitwise and(img1, img2, mask = None)
#dest not = cv2.bitwise not(img1, img2, mask = None)
dest or = cv2.bitwise or(img1, img2, mask = None)
# the window showing output image
# with the Bitwise XOR operation
# on the input images
#cv2.imshow('Bitwise XOR', dest xor)
#cv2.imshow('Bitwise AND', dest and)
#cv2.imshow('Bitwise NOT', dest not)
cv2.imshow('Bitwise OR', dest or)
```


Image transformations

cd ~/EDGE-AI/COMPUTER-VISION/opencv-course-master/Section1-Basics

python3 transformations.py

Transformation using Opencv

46

(height, width) = img.shape[:2]

if rot Point is None:

```
rotPoint = (width//2, height//2)
#pylint:disable=no-member
                                                                                 rotMat = cv.getRotationMatrix2D(rotPoint, angle, 1.0)
          import cv2 as cv
                                                                                 dimensions = (width, height)
      import numpy as np
                                                                                 return cv.warpAffine(img, rotMat, dimensions)
     img = cv.imread('/home/sambath/EDGE-AI/ArmeniaCat.jpg')
                                                                              rotated = rotate(img, -45)
      cv.imshow('Park', img)
                                                                             cv.imshow('Rotated', rotated)
       # Translation
                                                                             rotated rotated = rotate(imq, -90)
    def translate(img, x, y):
                                                                             cv.imshow('Rotated Rotated', rotated rotated)
         transMat = np.float32([[1,0,x],[0,1,y]])
                                                                             # Resizing
          dimensions = (img.shape[1], img.shape[0])
                                                                             resized = cv.resize(img, (500, 500)),
         return cv.warpAffine(img, transMat, dimensions)
                                                                       interpolation=cv.INTER CUBIC)
           # -x --> Left
                                                                             cv.imshow('Resized', resized)
     # -y --> Up
                                                                            # Flipping
      \# x --> Right
                                                                             flip = cv.flip(imq, -1)
      # v --> Down
                                                                             cv.imshow('Flip', flip)
    translated = translate(img, -100, 100)
                                                                             # Cropping
    cv.imshow('Translated', translated)
                                                                             cropped = img[200:400, 300:400]
         # Rotation
                                                                            45 cv.imshow('Cropped', cropped)
    def rotate(img, angle, rotPoint=None):
                                                                            46 cv.waitKey(0)
                                                                                                                             DATAEVER CONSULTING
```

Image ROI - Region of Interest

- Sometimes, you will have to play with certain regions of images. For eye detection in images, first face detection is done over the entire image. When a face is obtained, we select the face region alone and search for eyes inside it instead of searching the whole image. It improves accuracy (because eyes are always on faces :D) and performance (because we search in a small area).
- ROI is again obtained using Numpy indexing. Here I am selecting the ball and copying it to another region in the image:

>>> ball = img[280:340, 330:390] >>> img[273:333, 100:160] = ball

Demo Image ROI - Region of Interest

cd ~/EDGE-AI/WORKING

python3 messi2_roi.py;clear

Select Region of Interest and ENTER

Separate wind showing ROI will be displayed

Click on ROI window and ENTER

Capture Video from your webcam

```
cd ~/EDGE-AI/WORKING
python3 vid-cap.py;clear
PRESS'q'in video frameto exit
```

```
import numpy as np
import cv2 as cv
cap = cv.VideoCapture(0)
if not cap.isOpened():
   print("Cannot open camera")
    exit()
while True:
    # Capture frame-by-frame
    ret, frame = cap.read()
    # if frame is read correctly ret is True
    if not ret:
        print("Can't receive frame (stream end?)
Exiting ...")
       break
    # Our operations on the frame come here
    gray = cv.cvtColor(frame, cv.COLOR BGR2GRAY)
    # Display the resulting frame
    cv.imshow('frame', gray)
    if cv.waitKey(1) == ord('q'):
       break
# When everything done, release the capture
cap.release()
cv.destroyAllWindows()
```

Face Detection

- Face detection is a type of application.
- It is the process in which algorithms are developed and trained to properly locate faces), in images.
- These can be in real time from a video camera or from photographs.
- In order to recognize a face, the camera software must first detect it and identify the features before making an identification.
- Examples where Face detection is used are in
 - 1. Airport security systems. Likewise
 - 2. Facebook makes tagging suggestions to identify people in photos it must first locate the face.
 - 3. On Snapchat, face detection is required to augment reality which allows users to virtually wear dog face masks using fancy filters
 - 4. Another use of face detection is in smartphone face ID security.

Source:

https://becominghuman.ai/face-detection-using-opencv-with-haar-cascade-classifiers-941dbb25177

Face Detection and Face Recognition Demo

Face Detection in Python Using your Webcam (if you are using your camera for videocall, this program won't work)

Login to aijuser@dhruv

cd

Source go2faceinwebcam

source go-run

Webcam will open and faces captured by camera will be detected

CTRL+c to exit

Source:

https://realpython.com/face-detection-in-python-using-a-webcam/

Face Detection in Opency - Python

login to aijuser@dhruv

source go2facedetection

source go-run

Group of people faces are recognized

To Exit ... keep cursor on the photo type q

Face Recognition in Opency - Python

login to aijuser@dhruv

source go2facerecognition

source go-run-recognize-faces

Select a Face-ID to work on? - Type Enter

Type either 0 or 1 or 2

A face appears and you hit Enter that face is recognized

Again run source go-run-recognize-faces

Understanding Haar Cascades

- Haar Cascade is based on "Haar Wavelets"
- A Haar Wavelets is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis.
- It is based on the Haar Wavelet technique to analyze pixels in the image into squares by function.
- This uses ML algorithm to get a high degree of accuracy from "training data".
- This uses "integral image" concepts to compute the "features" detected.
- Haar Cascades use the Adaboost learning algorithm which selects a small number of important features from a large set to give an efficient result of classifiers.

Face Model

• A theoretical face Model

Difference between Face detection and Face Recognition

3. Center-surround features

Face Detection determines the locations and sizes of human faces in arbitrary (digital) images.

In Face Recognition, the use of Face Detection comes first to determine and isolate a face before it can be recognized.

Object Recognition Demo

sambath.narayanan@gmail.com

Object Recognition

- Object recognition (also called object classification) one or several pre-specified or learned objects or object classes can be recognized, usually together with their 2D positions in the image or 3D poses in the scene..
- Identification an individual instance of an object is recognized. Examples include identification of a specific person's face or fingerprint, identification of handwritten digits, or identification of a specific vehicle.
- **Detection** the image data are scanned for a specific condition.
 - Examples
 - detection of possible abnormal cells or tissues in medical images
 - detection of a vehicle in an automatic road toll system

Object Detection

(I). Login to gmeet from Samson M2 - 8 Cores

(II). Share the entire screen

(III)Open Tensor Flow Lite App and recognize objects

Hand Pose Detection

sambath.narayanan@gmail.com

Hand Pose Detection

(I). Login to 192.168.0.113(cvraman)

(II). Type the command in the Terminal window 'Isusb'

(III). Ensure there is a Camera device listed as follows. Other USB devices will also be shown.

Bus 001 Device 002: ID 046d:0825 Logitech, Inc. Webcam C270

(IV). Start the docker Container

In the jetcam folder there is Sambath-Camera.ipynb, run that in Jupyter

First cell command will show /dev/video0 (while running subsequent cells verify the previous cmd is complete)

MUST RUN Last cell – after successfully running all cells Os.___exit(00)

From trt_pose_hand, take live_hand_pose.ipynb and execute every cell

Hand Pose Detection

(I). Download the following PreTrained Model Weights Hand_pose_resnet18_baseline_224x224

(2).The current gesture classification model supportsPan,stop,fine,fist,peace, and no hand

(3). To make your own gesture classification

Create your own data set using gesture data collection .ipynb

NIDIA. NGC | CATALOG

Catalog > Containers > NVIDIA L4T ML

NVIDIA L4T ML

Description

Get started on your Al journey quickly on Jetson. The Machine learning container contains TensorFlow, PyTorch, JupyterLab, and other popular ML and data science frameworks such as scikit-learn, scipy, and Pandas pre-installed in a Python 3.6 environment.

Publisher

NVIDIA

Latest Tag

r35.2.1-py3

Modified

April 5, 2023

Compressed Size

7.25 GB

No

Multinode Support

65

Machine Learning Container for Jetson and JetPack

The l4t-ml docker image contains TensorFlow, PyTorch, JupyterLab, and other popular ML and data science frameworks such as scikit-learn, scipy, and Pandas pre-installed in a Python 3 environment. These containers support the following releases of <u>JetPack</u> for Jetson Nano, TX1/TX2, Xavier NX, AGX Xavier, AGX Orin, and Orin NX:

- JetPack 5.1 (L4T R35.2.1)
- JetPack 5.0.2 (L4T R35.1.0)
- JetPack 5.0.1 Developer Preview (L4T R34.1.1)
- JetPack 5.0.0 Developer Preview (L4T R34.1.0)
- JetPack 4.6.1 (L4T R32.7.1)
- JetPack 4.6 (L4T R32.6.1)
- JetPack 4.5 (L4T R32.5.0)
- JetPack 4.4.1 (L4T R32.4.4)
- JetPack 4.4 (L4T R32.4.3)
- JetPack 4.4 Developer Preview (L4T R32.4.2)

For additional machine learning containers for Jetson, see the <u>l4t-pytorch</u> and <u>l4t-tensorflow</u> images. Note that the TensorFlow and PyTorch pip wheel installers for aarch64 are available to download independently from the <u>Jetson Zoo</u>.

Package Versions

Depending on your version of JetPack-L4T, different tags of the l4t-ml container are available, each with support for Python 3. Be sure to clone a tag that matches the version of JetPack-L4T that you have installed on your Jetson.

- JetPack 5.1 (L4T R35.2.1)
 - l4t-ml:r35.2.1-py3
 - TensorFlow 2.11.0
 - PyTorch v2.0.0
 - torchvision v0.14.1
 - torchaudio v0.13.1
 - onnx 1.13.0
 - CuPy 11.5.0

Summary of Hardware and software setup

- Prepare Jetson Nano with latest Jetpack SD Card image
 - Standalone Headless mode
- Pull the l4t-ml container
- Run the container and login to the Jupyter Notebook running on Jetson Nano
 - browser runs on Linux Desktop (192.168.0.113:8888)

		sambath@cvraman: ~/jetsonUtilities		Q = _ 0 (
	c26a6b81c746: Pull complete					
• 🍅	a70635e646de: Pull complete					
	24cbe60e3161: Pull complete					
	c7f64cc97a39: Pull complete					
	8777adb92eda: Pull complete					
	542a24b3572f: Pull complete					
	3d5ade2b8849: Pull complete					
	3e865584f789: Pull complete					
A	4811af6cacf1: Pull complete					
	db645757aac7: Pull complete					
	0105dc23dc93: Pull complete					
:0	c8aff3baf097: Pull complete					
	5f50b3e38480: Pull complete					
>_	b5418d85b074: Pull complete					
	d09ffaf0f11a: Pull complete					
• 🔢	f1cf5625978f: Pull complete					
A	514fd4c3f8c5: Pull complete					
6	0988d0ccf8a6: Pull complete					
• Q	ffce97733d6c: Pull complete					
	80d5eedfe895: Pull complete					
•	d19792019860: Pull complete					
	3ee7b31a8890: Pull complete					
•æ	8aca18eb38a5: Pull complete					
	153000266b1a: Pull complete					
	23bf//41f5d8: Pull complete					
	d03fa2111a1c: Pull complete					
	095c23b5/5/8: Pull complete					
	2de934/ccaf2: Pull complete					
	0126C4b0a/65: Pull complete					
	ee3bc588c8ee: Pull complete					
	aa25eb953d98: Pull complete					
	9/TOSUBOYCCO: PULL COMPLETE		C 200C [7 -			
Digest: sha256:1f4ef02343223cab6bbe5bf85d5575364b7ee0ee23d72c2e3b89416ca3806f7e Status: Downloaded newer image for nvcr.io/nvidia/l4t-ml:r32.6.1-py3						
			CT7E			
	REPUSITORI TAG IMAGE ID CI nvcr io/nvidio/ $1/1$ t m] r22 6 1 nv2 491994957500 2	TEATED	512E			
	1000, 100, 100, 100, 100, 100, 100, 100	I months ago				

sambath@cvraman:~/jetsonutilities\$...

67

© Google Chrome ▼		Apr28 00:29 •	
M (no su 🗙 M Inbo	x × 🝐 KARU! × 📒 D	DeepF x 🖉 Capstox 🖌 Bankox 🚱 noisy2 x 🏺 How tox 🕲 dell hiji x 🕲 arduin x 💭 deepf x 🖓 Open x 🍓 Meshi x 🕲 Introdix 🕲 Conta x 🕅 NVIDI x 🔯 Medio x 🕉 Untition x 🚳 NVIDI x 🚳 Itutor x 💆 Tutor x	yta × + · · · · · · · · · ·
→ C ▲ Not se	cure 192.168.0.113:8888/lab	C C	i < ☆ 🗊 🔲 🔇 (Update :
File Edit View Ru	n Kernel Tabs Settings H	/ Help	
+ 13	± C	C Launcher X	
m /			
Name	 Last Modified 		
🖿 bin	2 years ago	Notebook	
boot 🖿	5 years ago		
🖿 dev	2 minutes ago		
dst	2 years ago		
etc	2 minutes ago	Python 3	
home	2 minutes ago		
IID modia	2 years ago		
meta	2 years ago	Console	
opt	2 years ago		
proc	2 minutes ago		
noot	2 minutes ago		
🖿 run	2 years ago	Python 3	
sbin	2 years ago		
srv	2 years ago		
sys	23 years ago	S_ Outer	
tmp	a minute ago		
usr var	2 years ago		
Val	2 years ago		
		Terminal Text File Markdown File Show Contextual	
	I		
s_ 0 @:			Launcher
jetson-nano-2zi		uutar.gz 🛆 🖪 archive (2).zip 🛆 🖪 mrlEves 201zip 🛆 🗐 a.tar.gz 🔿 🖻 messi2 roj.py 🔿 🗐 messi roj.jpg 🔷 🕑 train signs h5 🔿 🗐 gruplot-5.4.6.tar.gz 🛆 🗐 olb-1.6r	0.tgz ^ Show all X
Cancelled	a opener conn		

NGC Architecture

DATAEVER CONSULTING

X

Analyze Classify Chest XRAY

sambath.narayanan@gmail.com

COVID XRAY classification

Login to Google in dataeverconsulting user account

Then open colab

From Colab open the covid.ipynb file

Mount the Dataeverconsulting Google Drive

https://colab.research.google.com/drive/1-Kr_UwXgVdzj6zbXLG_UhYo6Z98HCoic?authuser=1#scrollTo=la7uXeQX8iOM

Why do we need COVID solution?

Number of scans professionals have to analyze = 1,000 a day <u>This can lead to lengthy delays between scan and treatment</u> <u>– even when someone needs urgent care</u>.

PRE COVID Statistics Global shortage of radiologists

Radiologists •US – 1: 10,000 •Singapore – 1: 20,000 •Japan – 1: 35,000 •India - 1: 100,000 •Nigeria – 1: 400,000 •Tanzania – 1: 1,300,000

Solution Description

- Detecting COVID-19 with Chest X Ray using PyTorch Image classification of Chest X Rays in one of three classes:
 - Normal,
 - Viral Pneumonia,
 - COVID-19
- Dataset from COVID-19 Radiography Dataset on Kaggle

Youtube video

https://www.youtube.com/watch?v=07Kg3iGpzXA

Prevention of Car Burglary using Real Time Video Surveillance

sambath.narayanan@dataeverconsulting.com

Why do we need this solution?

CCTV cameras and security staff are available in most of the residential/office complexes. Then why do we need this solution?

In any large complex, security is deployed in the selected locations.

Currently CCTV footage is used in majority of the cases for post-incident analysis

Hence an enhanced real time solution is required to address the above gaps.

How the solution works ?

- I. From the cctv video stream, Jetson Nano EDGE/AI based Object detector identifies a stranger moving around the car in odd hours and puts a bounding box
- II. The application takes a snapshot and uploads it to AWS S3 storage
- III. As soon as there is a put activity in S3 storage, Lambda function sends an email to the owners' smart phone with a photo of stranger

Solution components

- Jetson Nano EDGE device
- Jetson-inference optimized
 library
- TRT

- cuDNN
- AWS S3, Lambda, SES
- Email on Smart Phone

Reference Book

TEXTS IN COMPUTER SCIENCE

Computer Vision

Algorithms and Applications Second Edition

Richard Szeliski

Thank you !

Computer Vision

9th May 2023, Session 2B

sambath.narayanan@dataeverconsulting.com

