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Overall Session Agenda
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Training Acceleration

 GPU /FPGA Acceleration: Using specialized hardware like distributed
GPUs or TPUs can speed up training by leveraging their parallel
processing capabilities.

* Model Pruning: reduce the model's size and complexity, without
compromising model accuracy

* Optimized Libraries
* Optimized Data Types
« SIMD using Tensor cores

* Pre-Trained models: utilizing pretrained models and performing transfer
learning can save significant training time
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Al Inference Acceleration

 GPU /FPGA Acceleration: Using specialized hardware like distributed
GPUs or TPUs can speed up training by leveraging their parallel
processing capabilities.

* Model Compression: Methods like model distillation or network pruning
can reduce the model's size, leading to faster inference by reducing the
number of operations.

« Optimized Runtime
* Optimized Data Types

* Pre-Trained models: utilizing pretrained models and performing transfer
learning can save significant training time

« GPU Containerized Environment:
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Challenges




Why Al acceleration Required — Large size

* Increasing Number of Parameters:
 GPT-3 has 175 billion parameters

* Increasing Data Size:
* The IMDB-Wiki Computer Vision dataset, which contains more than
500,000 images of human faces
« Large GPU systems:

9 exaflops of computing power was unveiled by Google Cloud in
May 2022 This cluster is powered by Cloud TPU v4 Pods
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Why Al acceleration Required ?

* Aggressive Response time:

* Al problems in autonomous vehicle applications is around 50
milliseconds

 This response time is crucial for autonomous cars to make
smooth and safe decisions in real-time, including interacting
with the environment around the car, such as pedestrians and
traffic lights. Additionally, autonomous vehicles equipped with
radar or lidar sensors and a camera system have a reaction
time of 0.5 seconds

* However, human reaction times can be up to 0.5 seconds,
which is slower than the response time required for
autonomous vehicles
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Why Al acceleration Required ?

loT configurations, Deep learning

where sensors or 5

devices collect =

raw data g

Open source Data = But, AI
o O modeling

repositories o : .

involving large

ImageNet ‘ datasets

CIFAR requires large

MNIST Amount of data SEPLILE

COCO is alarge-scale power.

object detection,

segmentation, and How do data science techniques scale with amount of data‘
Source: Prof. Andrew Ng

captioning dataset.
COCO has several
features
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Can Al address Healthcare industry
Challenges ?

« Radiologist is a medical practitioner trained in analyzing MRI or CT scan, X Ray and using the
analysis to diagnose medical conditions

Global shortage
of radiologists

Radiologists

US - 1: 10,000
*Singapore - 1: 20,000
«Japan - 1: 35,000
*India - 1: 100,000
*Nigeria = 1: 400,000
*Tanzania - 1: 1,300,000

Number of scans professionals have to analyze = 1,000 a day

This can lead to lengthy delays between scan and treatment
— even when someone needs urgent care.

12
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Trends
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« Edge Al where machine learning
algorithms are being run

Edge AI locally(Edge) on an high performance

hardware device or embedded systems
(SoC, with GPU) as compared to on
servers

ia «—>
= ‘ﬁﬁ

at the Data
center

When Al / ML /DL
processing is integrated
with Edge computing,
then it is known as
Edge Al

14
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Top technology trend

* By the end of 2024, 75% of companies will shift from piloting to
operationalizing Al, driving a five times increase in streaming data and
analytics infrastructures.
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Technologies of relevance today’s topic
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Al Workload Characteristics
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Building Blocks Neurons - combine Neurons
into Neural Network(NN)

QN is Deep Learning >

In[:)uts Output
! |
y
X

Input, processing and output together is also known as Perceptron

Example: Does the passengers Biometrics identity
matches? which is a binary classification (Yes it
matches 1 or No it doesn’t match 0)
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Typical Al workload pattern

Three things are happening here f (:B) _ 1
—&
1. First, each input is multiplied by a weight: 1+e
« x1->x1*wil
‘X2 > X2 * W2 7
2. all weighted inputs are added together with a bias b:
« (x1*wWl)+(x2*w2)+b 0.5

3. Finally, the sum is passed through an activation function:
« y=S(x1*wl+x2*w2+b) | |

fa ] | J
-6 -4 -2 0 2 4 6
» The activation function is used to turn an unbounded input into an output that has a nice,

predictable form. A commonly used activation function is the sigmoid function:
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https://en.wikipedia.org/wiki/Sigmoid_function
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Forward propagation
|

Input Layer Hidden Layer Output Layer

Back propagation

This network has 2 inputs, a hidden layer with 2 neurons
(h1 and h2), and an output layer with 1 neuron (01). Notice
that the inputs for ol are the outputs from hl and h2 - that’s
what makes this a network.

Combining Neurons into Neural Network(NN)
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Training a Neural Network(NN)

Name Weight (Ib) Height (in) Gender
Alice 133 65 F
Bob 160 72 M

Charlie 152 70 M
Diana 120 60 F

Let's train our network to predict someone’s gender given their weight and
height:

Input Layer Hidden Layer Output Layer
weight
gender
height

Male =0

Female=1
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Minimize Loss - Mean Squared Error (MSE)

* First quantify how “good” it's doing so that it can try to do “better”.
« We’'ll use the mean squared error (MSE) Loss:

1 N
MSE = E ;{ytruf yprfdjz

Where,

Better predictions = Lower loss.
22 Training a network = trying to minimize its loss. (@ oaraever consuLTING
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Deep Learning Architectures

Unsupervised learning is

Supervised learning is a : a type of architecture to
type of architecture to Deep Learning draw inferences from
train model and draw Architectures input data without labels
inferences from input\ ¥

data with labels |
Supervised Unsupervised
(*)AC l
OO OO
o
SRR S
o)
Multilayer R:;:;:;:‘ (:S:\:;" Cozvoluu(:(nal s;“'a' Boltzmann
Perceptron (MLP) etwork (CNN) Machine (BM)
+
Y
,n"v )
o e, N.‘/ Restricted Boltzmann
- Machine (RBM)
Long Short-Term Gz:;ed R%c;zem - r?cpoa(;:f(SAE) Variationsl
Memory (LSTM) ™8 (GRV) : Autoencoder (VAE)

)
24 @ Input Cell ° Output Cell ' Hidden Cell @ Recurrent Cell @ Memory Cell Gated Memory Cell
@ DATAEVER CONSULTING



DEEP LEARNING WORKFLOW

DEPLOY WITH TENSORRT

Accelerated Deep Learning Training Software Stack
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Threads from the same block
have access to a shared
memory(SM) and their
execution can be synchronized

TPC

Geometry controller
SMC

SM SM
| cache | cache
MT issue MT issue
C cache C cache
SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
SFU | | SFU SFU | | SFU
i Shared Shared
memory memaory

CUDA-Compute Unified Device Architecture
SIMT - Single Instruction Multiple Threads
TPC- Texture Processing Cluster

GPC — GPU Processing Cluster

SM - Streaming Multi Processor

SMC — SM cluster

SFU = SP Function Unit

SP — Core / sequential processor
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VERY-IMPORTANT-REFERENCE-TESLA-GPU-CUDA/WHITEPAPER/volta-architecture-whitepaper.pdf

How the execution happens in GPU?

run ./deviceQuery and show

Software Hardware
[ ] Threads are executed by scalar processors
Scalar » Core
Thread Processor

Thread blocks are executed on multiprocessors

-+ SM - Streaming

Thread blocks do not migrate .
Multiprocessor

Several concurrent thread blocks can reside on one
Tglreaf Multiprocessor multiprocessor - limited by multiprocessor
o¢ resources (shared memory and register file)
22232 22222 23222 A kernel is launched as a grid of thread blocks
Grid

GPU

28
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A warpis a
collection of

Dispatet Urd Dispatch Urit Disgratct Urvt Dispatch Unit
s 2 s s threads, 32
Register File (32,768 x 32-bit) Register File (32,768 x 32-bit)

Core

g

Core Core

Core Core Care

Core Core
Core

Core

Threads from the same block
have access to a shared
memory(SM) and their
execution can be synchronized

SM - Streaming Multi Processor
SFU — SP Function Unit

SP — Core / sequential processor
29 @ DATAEVER CONSULTING




Warps execution

* Warps are the basic unit of execution in an
Streaming Multiprocessors (SM)

* Once a thread block is scheduled to an SM,
threads in the thread block are further partitioned
Into warps

* A warp consists of 32 consecutive threads and all
threads in a warp are executed in Single Instruction
Multiple Thread (SIMT) fashion

« all threads execute the same instruction, and each
thread carries out that operation on its own private data

30
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TU102 5M GAL1DD 5M GALDN 5M

[RTX 2080 Super] [a100] [RTX 3080)
GPU Architecturs MVIDLA Turing NWVIDIA Ampere MVIDLA Ampers
Tensor Cores persM 8 4 4
FP16 FMA operations per | 64 Dense: 256 Dense: 128
Tensor Core Sparse: 512 Sparse: 256
Total FPLE FMA 212 Dense- 1024 Denza 512
operations persmM Sparse: 2048 Sparse: 1024

TURING ARCHITECTURE TENSOR CORE

32 [GeForce RTX 2080 Super)

Below is a visual depiction of asingle Ampere architecture Tensor Con
architecture Tensor Core performing matrix math calculations and show
throughputs of RTX 3080 vs RTX 2080 Super a3 represented by the st
operations performed overthe same amount of fime.

AMPERE ARCHITECTURE TENSCR CORE with Sparsity
[GeForce RTX 3080 —
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f’-------

INTER-GPU COMMUNICATION

Intra-node and Inter-node

---------------------------------------------

i| Within a system

Shared Mem,
PCI, NVLink

_____________________________________________

Sockets, Infiniband
Others (plugin)
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GPU compute specs: Turing,Ampere

GeForce RTX 2080 |GeForce RTX 2080 Super| GeForce RTX 3080 10 GB
Graphics Card Founders Edition Founders Edition Founders Edition
GPU Codename TU1D4 TU1D4 GAl02
GPU Architecture NVIDIA Turing NVIDIA Turing NVIDIA Ampere
GPCs 6 6 6
TPCs 23 24 34
5Ms 46 48 68
CUDA Cores / SM 64 B4 128
CUDA Cores / GPU 2944 3072 8704
Tensor Cores / SM 8 (2nd Gen) 8 (2nd Gen) 4 (3rd Gen)
Tensor Cores / GPU 368 384 (2nd Gen) 272 (3rd Gen)
RT Cores 46 (15t Gen) 48 (15t Gen) 68 (2nd Gen)
GPU Boost Clock (MHz) 1800 1815 1710
Peak FP32 TFLOPS (non-Tensor)* 10.6 11.2 29.8
Peak FP16 TFLOPS (non-Tensor)’ 21.2 22.3 29.8
Peak BF16 TFLOPS (non-Tensor)* NA MNA, 29.8
Peak INT32 TOPS (non-Tensor)** 106 11.2 149
Peak FP16 Tensor TFLOPS B4.8 89.2 119/238
with FP16 Accumulate?
Peak FP16 Tensor TFLOPS 42.4 446 59.5/119
with FP32 Accumulate?
Peak BF16 Tensor TFLOPS NA NA 59.5/11%
with FP32 Accumulate?
Peak TF32 Tensor TFLOPS! NA MNA, 29.8/59.5%
Peak INT8 Tensor TOPS' 169.6 178.4 238/476

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepa per-VZﬂQDATAEVER CONSULTING
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GPU memory specs: Turing,Ampere

GeForce RTX 2080 |GeForce RTX 2080 Super| GeForce RTX 3080 10 GB
Graphics Card Founders Edition Founders Edition Founders Edition
Peak INT4 Tensor TOPS? 339.1 356.8 476/952¢
Frame Buffer Memory Size and 2152 MB 8152 MB 10240 MB
Type GDDRG GDDRG GDDREX
Memory Interface 256-bit 256-bit 320-bit
Memaorcy Clock (Data Bate) i Ghps loo.Ghog 19.0hos

| Me mnr! Bandwidth 448 GB/fsec 496 GB/fsec 760 GBfsec
ROPs 64 64 96
Pixel Fill-rate (Gigapixels/sec) 115.2 116.2 164.2
Texture Units 184 192 272
TexelFill-rate (Gigatexels/sec) 331.2 348.5 465
L1 Data Cache/Shared Memory 4416 KB 4608 KB 8704 KB
L2 Cache 5ize 4096 KB 4096 KB L120KB
Register File Size 11776 KB 12288 KB 17408 KB
TGP (Total Graphics Power) 225'W 250'W 320W
Transistor Count 13.6 Billion 13.6 Billion 28.3 Billion
Die Size 545 mm? 545 mm? 628.4 mm?
Manufacturing Process TSMC 12 nm FFN TSMC 12 nm FFN Samsung 8 nm 8N NVIDIA

(FinFET NVIDIA) (FinFET NVIDIA) CustomProcess

@ DATAEVER CONSULTING
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Multiprocessor N
-

Multiprocessor 2

Multiprocessor 1

CUDA memory types

« Shared memory partitioned amongst
Thread Blocks resident on the

Streaming Multiprocessors

* Registers are partitioned amongst

Threads

@ DATAEVER CONSULTING



37

Types of Memory

« Data stored in IS visible only to the thread
that wrote it and lasts only for the lifetime of that thread

has the same scope rules as register
memory, but performs slower

« Data stored in IS visible to all threads within
that block and lasts for the duration of the block. This is
invaluable because this type of memory allows for threads
to communicate and share data between one another

» Data stored in ¢! _ IS visible to all threads within
the application (including the host), and lasts for the
duration of the host allocation compared to global memory

Multiprocessor N

1 P

@ DATAEVER CONSULTING
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Types of Memory

Constant and texture memory for special applications

is used for data that will not change over
the course of a kernel execution and is read only

» Using constant rather than global memory can reduce the
required memory bandwidth, however, this performance
gain can only be realized when a warp of threads read the
same location.

! IS another variety of read-only memory on
the device

« When all reads in a waép are physically adjacent, using
texture memory can reduce memory traffic and increase
performance compared to global memory.

Multiprocessor N

Multiprocessor 1

| | | Unit
Processor 1 Processor2 **

+

T
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Memory spaces

To Host

Device

GFU

Multiprocessor

Multiprocessor

Multiprocessor

Registers -
Shared Memory

Memory spaces, which
have different
characteristics that reflect
their distinct usages in
CUDA applications
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Data transfer between Host and Device

The peak theoretical bandwidth between the
GPU memory and the GPU > host system memory and GPU memory

i
$ 3338 . 760 GB/sec

|

System GPU Memory
Memory 16 GB/sec

@ DATAEVER CONSULTING
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ACCELERATED COMPUTING

10X PERFORMANCE & 5X ENERGY EFFICIENCY FOR HPC

GPU Accelerator

Optimized for
CPU Parallel Tasks

Optimized for
Serial Tasks EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE

EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
EEEEEEEE EEEEEEEE
HOST_ EENEENEE EEEREEEE RN DEVICE
EEEEEEEE EEEEEREE
+ EEEEEEEE EEEREREE
EEEEEEEE EEEREREE
ENEEEEEE EREREREE
EEEEEEEE EREREREE
EEEEEEEE EREREREE
ENEEEEEE EREREREE
| ssnnEnEs snnEnnns |

.
rrrrrrr

- 1 ST LLY
| Nam 3 ISESANR R
jaeasiuasanEnasnaganainnnssnnrusfRuinanusy
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How the execution happens in GPU?

run ./deviceQuery and show

Software Hardware
[ ] Threads are executed by scalar processors
Scalar
Thread Processor

Thread blocks are executed on multiprocessors

-+ SM - Streaming

Thread blocks do not migrate .
Multiprocessor

Several concurrent thread blocks can reside on one
Tg[eaf Multiprocessor multiprocessor - limited by multiprocessor
o¢ resources (shared memory and register file)
22222 22222 22222 A kernel is launched as a grid of thread blocks
Grid

GPU

42
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Al Acceleration in Neural Network

Three things are happening in NN computing 1

+e®

S(z) = <
1. First, each input is multiplied by a weight:

all weighted inputs are added together with a bias b:
Finally, the sum is passed through an activation function:
(y=f(x1*wl+x2*w2+Db) |

-6 -4 -2 0 2 4 6
» The activation function is used to turn an unbounded input into an output that has a nice,

predictable form. A commonly used activation function is the sigmoid function:

I fa | I J
v

43
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https://en.wikipedia.org/wiki/Sigmoid_function
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GPU driven Al acceleration

(a) Scalar Operation

(b) SIMD Operation
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CUDA Software Environment

The challenge is to develop application software that
scales up to leverage the many processor cores, and
3D graphics applications scales leverage many GPUs

The CUDA parallel programming model is designed to
overcome this challenge while maintaining a low
learning curve for programmers familiar with standard
programming languages such as C

@ DATAEVER CONSULTING



GPU Computing Applications

Libraries and Middleware

VSIPL

cuDNN CULA Thrust SVM MATLAB
TensorRT MAGMA NPP Mathematica
OpenCurrent
Programming Languages
Loves Directives
Fortran Python DirectCompute (e.9. OpenACC)
Wrappers
<. + | CUDA-Enabled NVIDIA GPUs
~

NVIDIA Ampere Architecture Tesla A Series
(compute capabilities 8.x)
NVIDIA Turing Architecture GeForce 2000 Series Quadro RTX Series Tesla T Series
(compute capabilities 7.x)
NVIDIA Volta Architecture DRIVE/JETSON Quadro GV Series Tesla V Series
(compute capabilities 7.x) AGX Xavier
NVIDIA Pascal Architecture Tegra X2 GeForce 1000 Series Quadro P Series Tesla P Series
(compute capabilities 6.x)

r s . oA o ,

T 2 X0 | T o 7/
R e - 2 <= ( =
Embedded nsumer PPofessional _MDétd.Center ——
SRD/-2ptop IR Workstation - @ DATAEVER CONSULTING




Tensor RT (Tensor Flow RunTime)

* Introduction:
* Nvidia TensorRT is an SDK for high-performance deep learning inference.

* |t optimizes trained neural networks based on TensorFlow for deployment
on Al Accelerated Devices like NVIDIA GPU

* Features:
* Precision calibration for reduced compute and memory usage.

* Dynamic tensor memory management for increased inference
throughput.

* Integration with Nvidia DeepStream

47
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Tensor RT

Model: ResNet-50

Batch size: 64

Precision: FP32

Device: NVIDIA Tesla V100

. Native Inference time TensorRt inference Speedup
Time

6.7 ms 1.2 ms

@ DATAEVER CONSULTING
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Tensor RT performance comparison

Titan V GPU with Tensor RT Intel Xeon Gold 6140 CPU

* Object Detection, COCO dataset, * Object Detection, COCO
ResNet50-based model dataset, ResNet50-based model

« 33 x speedup

 Image classification
* 18x speedup

* 1x Speedup

 Image classification
* 1x speedup

@ DATAEVER CONSULTING
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Inference benchmark performance
comparison

Jetson Nano embedded Intel Core i7-6700K CPU
GPU with Tensor RT without Tensor RT

* 48X speedup * 1X speedup

* Image classification, ImageNet * Image classification, ImageNet
dataset, ResNetb0-based model dataset, ResNet50-based model

@ DATAEVER CONSULTING
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Xylinx FPGA architecture

Xilinx® UltraScale™ architecture comprises high-performance FPGA, MPSoC, and RFSoC families that address a vast spectrum of
system requirements with a focus on lowering total power consumption through numerous innovative technological
advancements.

Artix® UltraScale+ FPGAs: Higt ~*N FPGA, a programmable hardware doesn't
networking applications, vision ai d0 anything itself but it can be configured to
Kintex® UltraScale FPGAs: High  De just about any digital circuit you want.  ing both monolithic and
next-generation stacked silicon ir Nothing physically changes. You simply load bgic ratios and next-generation
transceivers, combined with low- : . . . cost.

a configuration into the FPGA and it starts

Kintex UltraScale+™ FPGAs: Inc Sefe like th . . d ce BOM cost. The ideal mix of
high-performance peripherals an ehaving like the circuit you wanted. FPGAs have numerous power

options that deliver the optimal balance between the required system performance and the smallest power envelope.

yptimized device for critical

Virtex® UltraScale FPGAs: High-capacity, high-performance FPGAs enabled using both monolithic and next-generation SSI
technology. Virtex UltraScale devices achieve the highest system capacity, bandwidth, and performance to address key market and
application requirements through integration of various system-level functions.

Virtex UltraScale+ FPGAs: The highest transceiver bandwidth, highest DSP count, and highest on-chip and in-package memory
available in the UltraScale architecture. Virtex UltraScale+ FPGAs also provide numerous power options that deliver the optimal
balance between the required system performance and the smallest power envelope.

Zynq® UltraScale+ MPSoCs: Combine the Arm® v8-based Cortex®-A53 high-performance energy-efficient 64-bit application
processor with the Arm Cortex-R5F real-time processor and the UltraScale architecture to create the industry's first
programmable MPSoCs. Provide unprecedented power savings, heterogeneous processing, and programmable acceleration.
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Xilinx FPGA

Trigger
(\/ N\ Tracking Al s
\ 150 and Inference
\/ Terabytes/ Sec Clustering
CMS
Sensor

«-——»

100ns

Figure 2: Compared to alternative devices such as GPUs and ASICs, FPGAs are the only viable choice for the event trigger processing because
they provide extremely low latency. While the large numerical processing capability of GPUs is attractive, these technologies are optimized for
high throughput, not low latency.

Optimize Trigger Filter Algorithm Development CERN where a global community conducts Research in fundamental
physics to better understand the universe and how it works.

The LHC at CERN is the place where subatomic particles are accelerated and smashed to produce new particles, which
are then revealed by an array of detectors and sensor systems. High energy particle physics experiments at CERN, like
the recent observation of the Higgs boson, are the key to advancing the frontiers of human knowledge about the
universe.

Compared to GPUs and ASICs, FPGAs are viable choice for the event trigger processing because they provide
extremely low latency. While the large numerical processing capability of GPUs is attractive, these technologies are
optimized for high throughput, not low latency. The very high data rates (150 Terabytes/second) in the CMS detector
requires event processing in real-time. The trigger filter algorithm was also modified.
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Host and Device ?

Source code in HIP has two flavors: Host code and Device code

* The Host is the CPU " The Device is the GPU

" Host code runs here ® Device code runs here

" Usual C++ syntax and features " (C-like syntax

" Entry point is the ‘main’ function * Device codes are launched via “kernels”

= HIP API can be used to create device buffers, move " |nstructions from the Host are enqueued into “streams”

between host and device, and launch device code.

53
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Nehalem
. released November 17, 2008, built on a 45 nm process and used in the Core i7, Core i5, Core i3 microprocessors.

. Westmere: 32 nm shrink of the Nehalem microarchitecture with several new features.

Sandy Bridge

. 32 nm microarchitecture, released January 9, 2011. Formerly called Gesher but renamed in 2007.11 First x86 to
introduce 256 bit AVX instruction set and implementation of YMM register.

. Ivy Bridge: successor to Sandy Bridge, using 22 nm process, released in April 2012.

Haswell
. 22 nm microarchitecture, released June 3, 2013. Added a number of new instructions, including FMA.

. Broadwell: 14 nm shrink of the Haswell microarchitecture, released in September 2014. Formerly called
Rockwell.

Skylake

. 14 nm microarchitecture, released August 5, 2015.

. Koby Lake: successor to Skylake, released in August 2016, broke

. Intel's Tick-Tock schedule due to delays with the 10 nm process.

«  Coffee Lake: successor to Kaby Lake, using 14+ nm process, released in October 2017

. Cascade Lake: server and high-end desktop successor to Kaby Lake-X, using 14 nm process,
released in April 2019

«  Comet Lake: successor to Coffee Lake, using 14++ nm process, released in August 2019

«  Cooper Lake: server-only, optimized for Al oriented workloads using bfloat16, with limited
availability only to Intel priority partners, using 14++ nm process, released in 2020

@ DATAEVER CONSULTING
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* A Nehalem core supports SMT, or “Hyper-Threading”. SMT is a pipeline design and implementation
to execute simultaneously within each core. For Nehalem,

can be simultaneously executing within each core.

permits more than one

(sajoAo ooud) awn |

SMT SMT
disabled enabled

Each block represents
an execution unit in the
Nehalem core

* blue 1¥ thread

s Aareen 7" thrasd
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* SIMD instructions apply the same FP or integer operation to collections of input data pairs
simultaneously

4 pairs of input data operands
in memory or registers

X, X, X, X,

I3 I

Yy

ALU\ (ALDN\ (ALUy  (ALUY

x_ip_x’ “\_iux x...ip,/ Kip/

Z, Z Z, A

SIMD ALU

4 SIMD results
produced simultaneously
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Example: AVX

EEEEEEEEEN —E—Bn

32-Bit Register

Intel® Streaming SIMD Extensions

HEEEEEEEEEE — FEEN — InEn

128-Bit Register

Intel® Advanced Vector Extensions
Intel® Advanced Vector Extensions 2

HEEEEEEEEEE — FEENNENN — EEEEEEEE

256-Bit Register

Intel® Advanced Vector Extensions 512

EEEEEEEEEE — NEEENNN NSNS — BN EEEEEE

512-Bit Register
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« Supplemental Streaming SIMD Extensions 3 (SSSE3) SSSE3 introduces 32 new instructions
to accelerate eight types of computations on packed integers.

SSEA4.1

« SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applications. SSE4.1 also
improves compiler vectorization and significantly increase support for packed dword computation.

SSE4.2
« During 2008 Intel introduced a new set of instructions collectively called as SSE4.2.

SSE4

» SSE4 has been defined for Intel’s 45nm products including Nehalem. A set of 7 new instructions for
SSE4.2 were introduced in Nehalem architecture in 2008. The first version of SSE4.1 was present in the
Penryn processor.

« SSEA4.2 instructions are further divided into 2 distinct sub-groups, called “STTNI” and “ATA”.
STring and Text New Instructions (STTNI)

» operate on strings of bytes or words of 16bit size. There are four new STTNI instructions which accelerate
string and text processing. For example, code can parse XML strings faster and can carry out faster
search and pattern matching. Implementation supports parallel data matching and comparison
operations.

@ DATAEVER CONSULTING
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Al Acceleration Demo
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CPU vs GPU Benchmark Classification CIFAR
data running on Kaggle

Login to aijjuser@dhruv
Visit the following website , login and edit

https://www.kaqqgle.com/code/snsmsssss/image-classification-ann-cpu-gpu-benchmarking/edit

Explain the code, model and data set
Train the model, it will take time

Later visit the run and show the performance difference
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https://www.kaggle.com/code/snsmsssss/image-classification-ann-cpu-gpu-benchmarking/edit

How to check an installed NVIDIA GPU ?

Login to sambath@firefly
1spci | grep —-i nvidia
nvidia-smi

cat /proc/driver/nvidia/version

Codename
Architecture
Pipelines

Core Speed
Memory Speed
Memory Bus Width
Memory Type

Max. Amount of

Memory

Shared Memory
DirectX
Transistor Count
technology

Features

GeForce 910M

MN165-GTR-B/S

Maowell

384 - unified

1122 - 1242 (Boost) MHz
4000 MHz

bd Bit

GDDORS, DDR3

4096 MB

no
DirectX 12 (FL 11_0), Shader 5.0
1870 Million

28 nm

GPU Boost 2.0, Optimus, PhysX, CUDA, GeForce Experience,

384 @ 0.64 GHz

64 Bit @ 2000

MHz

61 https://www.notebookcheck.net/NVIDIA-GeForce-940MX.156033.0.html
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JdeviceQuery

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

S gOZNVI Sample s Max dimension size of a grid size  (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes

Cd 1_Utllltles /deVl CeQuery Texture alignment: 512 bytes

. /deVl CeQuery Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes

/deviceQuery Starting

Integrated GPU sharing Host Memory: No
CUDA Device Query (Runtime API) version (CUDART static linking

Detected 1 CUDA Capable device(s)
Device 0: "GeForce 940MX"

Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

CUDA Diriver Version / Runtime Version 11.0/11.0 Device supports Unified Addressing (UVA):  Yes

CUDA Capability Major/Minor version number: 5.0

Device supports Managed Memory: Yes
Total amount of global memory: 2004 MBytes (2101870592 bytes) Device supports Compute Preemption: No
(' 3) Multiprocessors, (128) CUDA Cores/MP: 384 CUDA Cores Supports Cooperative Kernel Launch: No
GPU Max Clock rate: 1242 MHz (1.24 GHz) Supports MultiDevice Co-op Kernel Launch:  No
Memory Clock rate: 1001 Mhz Device PCI Domain ID / Bus ID / location ID: 0/1/0
Memory Bus Width: 64-bit Compute Mode:
L2 Cache Size: 1048576 bytes < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

Maximum Texture Dimension Size (x,y,z) ~ 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.0, CUDA Runtime Version = 11.0,

NumbDevs = 1
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Result = PASS

62 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
@ DATAEVER CONSULTING

Total amount of constant memory: 65536 bytes



The Power of Hardware acceleration
for Real Time ray Tracing
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Visual Computing

RTX

« RTX-Ray Tracing Texel eXtreme
« Shadows, Reflections using RayTracing
« Hardware and software support

« Raytracing + Rasterization = Hybrid
Rendering approach

 Scientific Visualization
* Nvidia - Microsoft - Direct X RayTracingAPI

« Applications: Energy exploration, gaming, film
and video production

Smoke Particles

Smoke simulation with volumetric shadows
using half-angle slicing technique.

Physical simulation
CUDA for simulations
Graphics interoperability
SIMD

GPU device 0: “Maxwell with Compute
Capability 5.5

77 frames / second

From NodeO, home dir ~
s gotosmoke

./smokeParticles
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] ] |
CPU/GL Stable Fluids (512 x 512): 16851684 fps CPU/GL Stable Fluids (512 x 512): 29.615005 fps Cuda/GL Stable Fluids (512 x 512): 1707.7 fps

17.008575 29.928940 1469.928101

CPU CPU (Optimized) €140)

CONSULTING




Real time Fluid Dynamics - CPU vs GPU

* Real-Time Fluid Dynamics: CPU vs GPU
e https://youtu.be/fEOP6H8eK4|
* Programming Models
* OpenMP, Open ACC, MPI

» Implementation Documentation

« CUDA/OpenGL Fluid simulation by Nolan Goodnight

cd cd
s gotoGPUFluids

./£fluidsGL
Show the display

s gotoCPUFluids
make clean

make

Show the display

67
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https://youtu.be/fE0P6H8eK4I

Sample matrix multiply CUDA C code

S goZmm

Show the CUDA code

vi mm.cu

source go-compile
source go-run

68 https://www.notebookcheck.net/NVIDIA-GeForce-940MX.156033.0.html
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Graphics Acceleration through GPU - demo

S go2NVISamples

cd 2 Graphics

. /volumeRender

. /marchingCubes

./simpleTexture

69
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Al accelerated Devices / Al Hardware
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High Performance Accelerated
Computing

CPU
Optimized for

Serial Tasks

GPU
Optimized for Many

Parallel Tasks
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OO D000 A000E 00
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NVIDIA V100 FP32

With the A100 GPU, NVIDIA introduces fine-grained structured sparsity, a
novel approach that doubles compute throughput for deep neural
networks.

Sparsity is possible in deep leaming because the importance of individual
weights evolves during the learning process, and by the end of network
training, only a subset of weights have acquired a meaningful purpose in
determining the leamed output. The remaining weights are no longer
needed.

Fine grained structured sparsity imposes a constraint on the allowed
sparsity pattern, making it more efficient for hardware fo do the necessary
alignment of input operands. Because deep leaming networks are able to
adapt weights during the fraining process based on training feedback,
NVIDIA engineers have found in general that the structure constraint does
not impact the accuracy of the frained network for inferencing. This enables
inferencing acceleration with sparsity.

For training acceleration, sparsity needs to be introduced early in the
process to offer a performance benefit, and methodologies for training
acceleration without accuracy loss are an active research area.

Structure is enforced through a new 2:4 sparse matrix definition that allows
two non-zero values in every four-entry vector. A100 supports 2:4
structured sparsity on rows, as shown in Figure 9.

Due to the well-defined structure of the matrix, it can be compressed
efficiently and reduce memory storage and bandwidth by almost 2x.

or Core TF32 with Sparsity

-
z
’
z
-
T

&

W

W
WATTALY
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A100 GPU introduces fine-grained structured
sparsity

With the A100 GPU, NVIDIA introduces fine-grained structured sparsity, a
novel approach that doubles compute throughput for deep neural
networks.

Sparsity is possible in deep leaming because the importance of individual
weights evolves during the leaming process, and by the end of network
training, onty a subset of weights have acquired a meaningful purpose in
determining the leamed output. The remaining weights are no longer
needed.

Fine grained structured sparsity imposes a consiraint on the allowed
sparsity pattem, making it more efficient for hardware to do the necessary
alignment of input operands. Because deep leaming networks are able to
adapt weights during the training process based on fraining feedback,
NVIDIA engineers have found in general that the structure constraint does
not impact the accuracy of the trained network for inferencing. This enables
inferencing acceleration with sparsity.

For training acceleration, sparsity needs to be introduced early in the
process to offer a performance benefit, and methodologies for training
acceleration without accuracy loss are an active research area.

Sparse matrx definition

Structure is enforced through a new 2-4 sparse matrix definition that allows
two non-zero values in every four-entry vector. A100 supports 2:4
structured sparsity on rows, as shown in Figure 9.

Due to the well-defined structure of the matrix, it can be compressed
efficiently and reduce memory storage and bandwidth by almaost 2x.
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TF32 - Tensor Float arithmatic

TF32 a great alternative to FP32 for crunching o
through single-precision math, specifically the o

Range Precision
massive multiply-accumulate functions at the heart FP32 _

of deep learning

BERT-LARGE BERT-LARGE
TRAINING (FP32) TRAINING (FP16) TFI1 Eange

i roson oz v | A

Lx

. TFiI Preciston
3

P32 T2 FP16 FPI16

FP16

74 https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-
precision-format/ @ DATAEVER CONSULTING
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cuDNN 8.9

* NVIDIA CUDA Deep Neural Network (cuDNN) is a GPU-accelerated
library of primitives for deep neural networks.

* |t provides highly tuned implementations of routines arising
frequently in DNN applications.

* Added support for FP8 fused-multi-head attention training and
inference support targeting BERT on NVIDIA Hopper GPUs.

* Added support for transformer models training and inference
using Flash Attention in cuDNN runtime fusion engine
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CPU / No cuDNN GPU / cuDNN

Epoch 1/5 1875/1875 Epoch 1/5 1875/1875
e e TRLE S R Y
43ms/step - loss: 0.1403 - accuracy: 0.9561 Gms/step - loss: 0.1409 - accuracy: 0.9565
- val loss: 0.0421 - val accuracy: 0.9865 - val loss: 0.0480 - val accuracy: 0.9845
Epoch 2/5 1875/1875 Epoch 2/5 1875/1875
[m=====mm=====mmmmmmm—ooooooeo] - 755 R —————
40ms/step - loss: 0.0442 - accuracy: 0.9864 6éms/step - loss: 0.0469 - accuracy: 0.9862
- val loss: 0.0398 - val accuracy: 0.9876 - val loss: 0.0605 - val accuracy: 0.9798
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Sample code with cuDNN 8.9

In Colab, Open an existing file that is
import tensorflow as tf ~/EDGE-AIl/CU-DNN/cuDNN_example.ipynb
from tensorflow.keras.layers import Conv2D, MaxPooling2D

f t fl .k . del i t S tial .
rom LEeNSOriiow.Xxeras.models lmport sequentia Run with cuDNN & NocuDNN & show the performance

# Define a simple CNN model

model = Sequential ()

model.add (Conv2D (32, (3, 3), activation='relu', input shape=(28, 28, 1)))
model .add (MaxPooling2D((2, 2)))

model.add (Conv2D (64, (3, 3), activation='relu'))
model.add (MaxPooling2D ( (2, 2)))

model.add (Conv2D (64, (3, 3), activation='relu'))
model.add (tf.keras.layers.Flatten()) True when
2 No cuDNN

model.add(tf.keras.layers.Dense (64, activation='relu'))
model.add (tf.keras.layers.Dense (10))

# Compile the model with cuDNN support

model.compile (optimizer="'adam',
loss=tf.keras.losses.SparseCategoricalCros
metrics=['accuracy'],
experimental run tf function=False)_ # Enable cuDNN

‘  False when

ropy (from logits=True),

# Load the dataset and train the model CUDNN
(train images, train labels), (test images, test labels) = tf.keras.datasets.mnist.load data()
train images = train images.reshape ((60000, 28, 28, 1)) enabled

train images train images.astype('float32') / 255

test images = test images.reshape ((10000, 28, 28, 1))

test images = test images.astype('float32') / 255

model.fit (train images, train labels, epochs=5, validation data=(test images, test labels))
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f’-------

INTER-GPU COMMUNICATION

Intra-node and Inter-node

---------------------------------------------

i| Within a system

Shared Mem,
PCI, NVLink

_____________________________________________

Sockets, Infiniband
Others (plugin)
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GPU specifications

GeForce RTX 2080 |GeForce RTX 2080 Super| GeForce RTX 3080 10 GB
Graphics Card Founders Edition Founders Edition Founders Edition
GPU Codename TuiD4 TU104 GA102
GPU Architecture NVIDIA Turing NVIDIA Turing NVIDIA Ampere
GPCs 6 6 6
TPCs 23 24 34
Shs 46 48 6BE
CUDA Cores /SM 64 &4 128
CUDA Cores f GPU 2944 3072 8704
Tensor Cores / SM 8(2nd Gen) 8 (2nd Gen) 4 (3rd Gen)
Tensor Cores / GPU 368 384 (2nd Gen) 272 (3rd Gen)
RT Cores 46 (15t Gen) 48 (15t Gen) 68 (2nd Gen)
GPU Boost Clock (MHz) 1800 1815 1710
Peak FP32 TFLOPS (non-Tensor)* 10.6 11.2 298
Peak FP16 TFLOPS (non-Tensor)* 21.2 223 298
Peak BF16 TFLOPS (non-Tensor)? M A, 29.8
Peak INT32 TOPS (non-Tensor)** 10.6 11.2 149
Peak FP16 Tensor TFLOPS 24.8 29.2 119/238
with FP16 Accumulate®
Peak FP16 Tensor TFLOPS 42.4 44 .6 59.5/119
with FP32 Accumulate®
Peak BF16 Tensor TFLOPS M A, 59.5/11%
with FP32 Accumulate?
Peak TF32 Tensor TFLOPS? M A 29.8/59.5%
Peak INT8 Tensor TOPS! 169.6 178.4 238/476°

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepa per-VZﬂQDATAEVER CONSULTING
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GPU specifications

GeForce RTX 2080 |GeForce RTX 2080 Super| GeForce RTX 3080 10 GB
Graphics Card Founders Edition Founders Edition Founders Edition
Peak INT4 Tensor TOPS! 339.1 356.8 476/952°
Frame Buffer Memory Size and 8192 MB 8192 MB 10240 MB
Type GDDR6G GDDRE GDDRBX
Memory Interface 256-bit 256-bit 320-bit
—MemaryClack(QataRate) 14Ghps 155 Ghng 19.Ghns

| Me mory Bandwidth 448 GB/sec 496 GB/sec 760 GB/sec
ROPs 64 64 96
Pixel Fill-rate {Elgaphte Is/ sec) 115.2 116.2 164.2
Texture Units 184 192 272
TexelFill-rate (Gigatexels/sec) 331.2 348.5 465
L1 Data Cache/Shared Memory 4416 KB 4608 KB 8704 KB
L2 Cache Size 4096 KB 4096 KB 5120KB
Register File Size 11776 KB 12288 KB 17408 KB

TGP (Total Graphics Power) 225 W 250 W 320W
Transistor Count 13.6 Billion 13.6 Billion 28 .3 Billion
Die Size 545 mm? 545 mm? 628.4 mm?
Manufacturing Process TSMC12 nm FFN TSMC12 nmFFN Samsung 8 nmEN NVIDIA
(FInFET NVIDIA) (FinFET NVIDIA) Custom Process
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Multiprocessor N
-

Multiprocessor 2

Multiprocessor 1

CUDA memory types

« Shared memory partitioned amongst
Thread Blocks resident on the

Streaming Multiprocessors

* Registers are partitioned amongst

Threads
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Types of Memory

« Data stored in IS visible only to the thread
that wrote it and lasts only for the lifetime of that thread

has the same scope rules as register
memory, but performs slower

« Data stored in IS visible to all threads within
that block and lasts for the duration of the block. This is
invaluable because this type of memory allows for threads
to communicate and share data between one another

» Data stored in ¢! _ IS visible to all threads within
the application (including the host), and lasts for the
duration of the host allocation compared to global memory

Multiprocessor N

1 P
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Types of Memory

Constant and texture memory for special applications

is used for data that will not change over
the course of a kernel execution and is read only

» Using constant rather than global memory can reduce the
required memory bandwidth, however, this performance
gain can only be realized when a warp of threads read the
same location.

! IS another variety of read-only memory on
the device

« When all reads in a waép are physically adjacent, using
texture memory can reduce memory traffic and increase
performance compared to global memory.

Multiprocessor N

Multiprocessor 1

| | | Unit
Processor 1 Processor2 **

+

T
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Memory spaces

To Host

Device

GFU

Multiprocessor

Multiprocessor

Multiprocessor

Registers -
Shared Memory

Memory spaces, which
have different
characteristics that reflect
their distinct usages in
CUDA applications
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Software/Library/Programming
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Transfer Learning

» CenterNet (2019) is an object detection architecture based on a deep convolution
neural network trained to detect each object as a triplet (rather than a pair) of
keypoints, so as to improve both precision and recall

 EfficientDet (2019) is an object detection architecture built to scale up model
efficiency in computer vision. This architecture achieves much better efficiency than
prior architectures across a wide spectrum of resource constraints

» MobileNet is an object detector released in 2017 as an efficient CNN architecture
designed for mobile and embedded vision application. This architecture uses proven
depth-wise separable convolutions to build lightweight deep neural networks for
mobile and embedded vision applications.

® MobileNets are based on a streamlined architecture that uses depthwise
separable convolutions to build light weight deep neural networks.

# Huang et al.[9]
DATAEVER CONSULTING
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Transfer Learning

» RetinaNet is an architecture developed by the Facebook research team in 2018. RetinaNet uses a
Feature Pyramid Network (FPN) backbone on top of a feed-forward ResNet architecture to
generate a rich, multi-scale convolutional feature pyramid. It is a one-staged detector (that is, a
single network, unlike R-CNN, which is 2-staged).

 R-CNN (2014) is a 2-stage object detection architecture. It is a region-based CNN that uses a
Region Proposal Network to generate regions of interests in the first stage, and then sends the
region proposal down the pipeline for object classification and bounding box regression.

- ExtremeNet (2019) is a bottom-up object detection framework that detects four extreme points
(top-most, left-most, bottom-most, right-most) of an object to find extreme points, by predicting
four multi-peak heatmaps for each object category.

# Huang et al.[9]
DATAEVER CONSULTING
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Books

e "Deep Learning" by lan Goodfellow, Yoshua Bengio, and Aaron
Courville, 2021, MIT Press
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Thank you !

Al Accelerated Devices
Day 2, Session 2A

sambath.narayanan@gmail.com
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