
DATAEVER CONSULTINGDATAEVER CONSULTING

HPC Software Framework-

CUDA and OpenACC

Wednesday, Nov 2, 2022

Session

DATAEVER CONSULTING

Prerequisites

• You (probably) need experience with C or C++

• You don’t need GPU experience

• You don’t need parallel programming experience

• You don’t need graphics experience

© NVIDIA 2013

DATAEVER CONSULTINGDATAEVER CONSULTING

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

CONCEPTS

© NVIDIA 2013

DATAEVER CONSULTING

3 WAYS TO PROGRAM GPU based

Accelerators

Applications

Libraries
CUDA

Programming
OpenMP/
OpenACC
Directives

4

DATAEVER CONSULTINGDATAEVER CONSULTING

What is CUDA ?

• CUDA is the name of NVIDIA’s parallel computing
architecture for GPUs

• NVIDIA provides a complete toolkit for programming
the CUDA architecture that includes the compiler,
debugger, profiler, libraries

• The CUDA architecture supports standard languages
such as C, C++ and Fortran, and APIs for GPU
Computing, such as OpenCL and DirectCompute.

https://www.nvidia.com/en-us/geforce/technologies/cuda/faq/

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA compatibility platform
CUDA Driver and Toolkit

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Compute Capability

The compute capability(CC) describes the features of the h/w

It reflects the set of instructions supported by the device

also

+ the maximum number of threads per block

+ the number of registers per multiprocessor

Higher compute capability versions are supersets of lower versions, so

they are backward compatible.

The CC of the GPU in the device can be queried programmatically

using deviceQuery

DATAEVER CONSULTINGDATAEVER CONSULTING

Device 0: "GeForce 940MX“, , NumDevs = 1

 CUDA Driver Version / Runtime Version 11.0 / 11.0

 CUDA Capability Major/Minor version number: 5.0

 Total amount of global memory: 2004 MBytes (2101870592 bytes)

 (3) Multiprocessors, (128) CUDA Cores/MP: 384 CUDA Cores

 GPU Max Clock rate: 1242 MHz (1.24 GHz)

 Memory Clock rate: 1001 Mhz

 Memory Bus Width: 64-bit

 L2 Cache Size: 1048576 bytes

 Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)

 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

 Total amount of constant memory: 65536 bytes

 Total amount of shared memory per block: 49152 bytes

 Total number of registers available per block: 65536

 Warp size: 32

 Maximum number of threads per multiprocessor: 2048

 Maximum number of threads per block: 1024

 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

GPU configuration - Lab Environment

8

DATAEVER CONSULTINGDATAEVER CONSULTING

Programmer perspective vs Hardware
perspective

Programmer

view

Hardware

View

9

DATAEVER CONSULTINGDATAEVER CONSULTING

Thread, Blocks and Warps
• A thread block is composed of ‘warps’. A warp is a set of 32 threads

within a thread block such that all the threads in a warp execute the
same instruction. These threads are selected serially by the SM

• Once a thread block is launched on a multiprocessor (SM), all of its
warps are resident until their execution finishes. Thus a new block is
not launched

10

DATAEVER CONSULTINGDATAEVER CONSULTING

Automatic Scalability with CUDA

A GPU is built around an
array of Streaming

Multiprocessors (SMs).

A multithreaded program is
partitioned into blocks of

threads that execute
independently from each

other

A GPU with more multiprocessors
will automatically execute the

program in less time than a GPU
with fewer multiprocessors

Multiple Thread Blocks
Can be assigned to a single

SM

DATAEVER CONSULTING

Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013

DATAEVER CONSULTING

Heterogeneous Computing

© NVIDIA 2013

#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

void fill_ints(int *x, int n) {

 fill_n(x, n, 1);

}

int main(void) {

 int *in, *out; // host copies of a, b, c

 int *d_in, *d_out; // device copies of a, b, c

 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values

 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies

 cudaMalloc((void **)&d_in, size);

 cudaMalloc((void **)&d_out, size);

 // Copy to device

 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU

 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

 // Copy result back to host

 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(in); free(out);

 cudaFree(d_in); cudaFree(d_out);

 return 0;

}

serial code

parallel code

serial code

parallel function

CPU

CPU

GPU

thread

thread block

thread

DATAEVER CONSULTING

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

PCI Bus

© NVIDIA 2013

DATAEVER CONSULTING

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

© NVIDIA 2013

PCI Bus

DATAEVER CONSULTING

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

© NVIDIA 2013

PCI Bus

DATAEVER CONSULTING

Hello World!

int main(void) {

 printf("Hello World!\n");

 return 0;

 }

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used

to compile programs with no device

code

Output:

$ nvcc

hello_world.

cu

$ a.out

Hello World!

$

© NVIDIA 2013

DATAEVER CONSULTING

Hello World! with Device Code

__global__ void mykernel(void) {

 }

 int main(void) {

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

 }

▪ Two new syntactic elements…

© NVIDIA 2013

DATAEVER CONSULTING

Hello World! with Device Code

__global__ void mykernel(void) {

}

• CUDA C/C++ keyword __global__ indicates a function that:
• Runs on the device
• Is called from host code

• nvcc separates source code into host and device components
• Device functions (e.g. mykernel()) processed by NVIDIA compiler
• Host functions (e.g. main()) processed by standard host compiler

• gcc, cl.exe

© NVIDIA 2013

DATAEVER CONSULTING

Hello World! with Device COde

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from host code to device
code

• Also called a “kernel launch”
• We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function on the GPU!

© NVIDIA 2013

DATAEVER CONSULTINGDATAEVER CONSULTING

__global__ void add(int *a, int *b, int

*c)

 {

 *c = *a + *b;

 }

#include<stdio.h>

//int add(int *a,int *b,int *c);

int main(void)

 {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; //device copies

of a, b, c

int size = sizeof(int);

// Allocate space for device copies of

a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;

// Copy inputs to device

cudaMemcpy(d_a, &a, size,

cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size,

cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size,

cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b);

cudaFree(d_c);

printf("Sum of a and b = %d \n",c);

return 0;

 }

> cat add.cu
> cat add.cu (continued)

http://add.cu/
http://add.cu/

DATAEVER CONSULTINGDATAEVER CONSULTING

login to dhruv

source go2EX3-ADD

source go-compile-link

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Execution Model

• Operational view of how
instructions are executed CUDA
threads are executed on a specific
computing architecture

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

built-in variable

threadIdx

23

DATAEVER CONSULTINGDATAEVER CONSULTING

Identifying threads using threadIdx
sample code

• threadIdx is a 3-component vector

• Using this threads can be identified
using a one-dimensional, two-
dimensional, or three-
dimensional thread index, forming a
one-dimensional, two-dimensional, or
three-dimensional block of threads,
called a thread block

• This provides a natural way to invoke
computation across the elements in a
domain such as a vector, matrix, or
volume

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

24

DATAEVER CONSULTINGDATAEVER CONSULTING

__global__ void add(int *a,int *b,int*c)

 {c[threadIdx.x] = a[threadIdx.x] +

 b[threadIdx.x];}

//------------------------------------

#define N 64

#include <stdio.h>

 int main(void) {

 int *a, *b, *c;

// host copies of a, b, c

 int *d_a, *d_b, *d_c;

// device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device

copies of a, b, c

 cudaMalloc((void **)&d_a,

size);

 cudaMalloc((void **)&d_b,

size);

 cudaMalloc((void **)&d_c,

size);

// Alloc space for host copies of a, b,

c and setup input values

EX6-PAR-THREADID.cu
a = (int *)malloc(size);//

 b = (int *)malloc(size);// c =

(int *)malloc(size);

 for (int x = 0; x < N; x++)

 {

 a[x]=x;

 b[x]=x;

 }

 // Copy inputs to device

 cudaMemcpy(d_a, a, size,

cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size,

cudaMemcpyHostToDevice);

//Launch add() kernel on GPU with N

threads per Block

 //add<<<Number of Blocks,

Number of Threads per Block>>>

 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size,

cudaMemcpyDeviceToHost);

//Cleanup

free(a);free(b);free(c);

cudaFree(d_a); cudaFree(d_b);

http://add.cu/

DATAEVER CONSULTINGDATAEVER CONSULTING

login to sambath@dhruv

source go2EX6-PAR-THREADID

cat go-compile-run

source go-compile-run

DATAEVER CONSULTING

Hello World! with Device Code

__global__ void mykernel(void){

 }

 int main(void) {

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

 }

• mykernel() does nothing,

somewhat anticlimactic!

Output:

$ nvcc

hello.cu

$ a.out

Hello World!

$

© NVIDIA 2013

DATAEVER CONSULTING

Parallel Programming in CUDA C/C++

• But wait… GPU computing is about

massive parallelism!

• We need a more interesting example…

• We’ll start by adding two integers and

build up to vector addition

a b c

© NVIDIA 2013

DATAEVER CONSULTING

Addition on the Device

• A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• As before __global__ is a CUDA C/C++ keyword meaning
• add() will execute on the device
• add() will be called from the host

DATAEVER CONSULTING

Addition on the Device

• Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• add() runs on the device, so a, b and c must point to device memory

• We need to allocate memory on the GPU

DATAEVER CONSULTING

Addition on the Device: add()

• Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• Let’s take a look at main()…

DATAEVER CONSULTING

Addition on the Device: main()
int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;

DATAEVER CONSULTING

Addition on the Device: main()
// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

DATAEVER CONSULTINGDATAEVER CONSULTING

RUNNING IN

PARALLEL

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

DATAEVER CONSULTING

Moving to Parallel

• GPU computing is about massive parallelism
• So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

• Instead of executing add() once, execute N times in parallel

DATAEVER CONSULTING

Vector Addition on the Device

• With add() running in parallel we can do vector addition

• Terminology: each parallel invocation of add() is referred
to as a block

• The set of blocks is referred to as a grid
• Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• By using blockIdx.x to index into the array, each block
handles a different index

DATAEVER CONSULTING

Vector Addition on the Device
__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• On the device, each block can execute in
parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

DATAEVER CONSULTING

Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• Let’s take a look at main()…

DATAEVER CONSULTING

Vector Addition on the Device: main()
#define N 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

DATAEVER CONSULTING

Vector Addition on the Device: main()
// Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks

 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

DATAEVER CONSULTING

Review (1 of 2)

• Difference between host and device
• Host CPU
• Device GPU

• Using __global__ to declare a function as device code
• Executes on the device
• Called from the host

• Passing parameters from host code to a device function

DATAEVER CONSULTING

Review (2 of 2)

• Basic device memory management
• cudaMalloc()

• cudaMemcpy()

• cudaFree()

• Launching parallel kernels
• Launch N copies of add() with add<<<N,1>>>(…);
• Use blockIdx.x to access block index

DATAEVER CONSULTINGDATAEVER CONSULTING

INTRODUCING

THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

DATAEVER CONSULTING

CUDA Threads

• Terminology: a block can be split into parallel
threads

• Let’s change add() to use parallel threads
instead of parallel blocks

• We use threadIdx.x instead of blockIdx.x

• Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {

 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

© NVIDIA 2013

DATAEVER CONSULTING

Vector Addition Using Threads: main()
#define N 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

© NVIDIA 2013

DATAEVER CONSULTING

Vector Addition Using Threads: main()
// Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads

 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

DATAEVER CONSULTINGDATAEVER CONSULTING

COMBINING THREADS

AND BLOCKS

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

DATAEVER CONSULTING

Combining Blocks and Threads

• We’ve seen parallel vector addition using:
• Many blocks with one thread each
• One block with many threads

• Let’s adapt vector addition to use both blocks and threads

• Why? We’ll come to that…

• First let’s discuss data indexing…

DATAEVER CONSULTING

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

• With M threads/block a unique index for each
thread is given by:

int index = threadIdx.x + blockIdx.x * M;

• No longer as simple as using blockIdx.x and
threadIdx.x

• Consider indexing an array with one element per thread
(8 threads/block)
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

DATAEVER CONSULTING

Indexing Arrays: Example

• Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;

 = 5 + 2 * 8;

 = 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

DATAEVER CONSULTING

Vector Addition with Blocks and Threads

• What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads
per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel
threads and parallel blocks

__global__ void add(int *a, int *b, int *c) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 c[index] = a[index] + b[index];

}

DATAEVER CONSULTING

Addition with Blocks and Threads:
main()
#define N (2048*2048)

 #define THREADS_PER_BLOCK 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);

DATAEVER CONSULTING

Addition with Blocks and Threads:
main()

// Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

DATAEVER CONSULTING

Handling Arbitrary Vector Sizes

• Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

• Typical problems are not friendly
multiples of blockDim.x

• Avoid accessing beyond the end
of the arrays:
__global__ void add(int *a, int *b, int *c, int n) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 if (index < n)

 c[index] = a[index] + b[index];

}

DATAEVER CONSULTINGDATAEVER CONSULTING

References

1. https://www.nvidia.com/enus/geforce/technologies/cuda/faq/
2. https://developer.nvidia.com/blog/analysis-driven-optimization-

preparing-for-analysis-with-nvidia-nsight-compute-part-1/?ncid=so-

nvsh-46518#cid=hpc06_so-nvsh_en-us
3. https://developer.nvidia.com/cuda-downloads.

4. https://developer.nvidia.com/higher-education-and-research
Docs.nvidia.com/hpc-sdk/hpc-sdk-install-guide/index.html

https://developer.nvidia.com/blog/analysis-driven-optimization-preparing-for-analysis-with-nvidia-nsight-compute-part-1/?ncid=so-nvsh-46518#cid=hpc06_so-nvsh_en-us
https://developer.nvidia.com/blog/analysis-driven-optimization-preparing-for-analysis-with-nvidia-nsight-compute-part-1/?ncid=so-nvsh-46518#cid=hpc06_so-nvsh_en-us
https://developer.nvidia.com/blog/analysis-driven-optimization-preparing-for-analysis-with-nvidia-nsight-compute-part-1/?ncid=so-nvsh-46518#cid=hpc06_so-nvsh_en-us
https://developer.nvidia.com/higher-education-and-research

DATAEVER CONSULTING

IDs and Dimensions

• A kernel is launched as
a grid of blocks of
threads

• blockIdx and threadIdx
are 3D

• We showed only one
dimension (x)

• Built-in variables:
• threadIdx

• blockIdx

• blockDim

• gridDim

Device

Grid 1
Bloc

k

(0,0,

0)

Bloc

k

(1,0,

0)

Bloc

k

(2,0,

0)

Bloc

k

(1,1,

0)

Bloc

k

(2,1,

0)

Bloc

k

(0,1,

0)

Block (1,1,0)

Thre

ad

(0,0,

0)

Thre

ad

(1,0,

0)

Thre

ad

(2,0,

0)

Thre

ad

(3,0,

0)

Thre

ad

(4,0,

0)

Thre

ad

(0,1,

0)

Thre

ad

(1,1,

0)

Thre

ad

(2,1,

0)

Thre

ad

(3,1,

0)

Thre

ad

(4,1,

0)

Thre

ad

(0,2,

0)

Thre

ad

(1,2,

0)

Thre

ad

(2,2,

0)

Thre

ad

(3,2,

0)

Thre

ad

(4,2,

0)

DATAEVER CONSULTINGDATAEVER CONSULTING

Additional Content

DATAEVER CONSULTINGDATAEVER CONSULTING

NVIDIA HPC SDK
NVIDIA HPC SDK, a comprehensive, integrated suite of compilers,
libraries and tools for the NVIDIA HPC Platform

https://www.youtube.com/watch?v=hYoebR5HXmQ

NVIDIA HPC SDK, an integrated suite of compilers, libraries and tools for the NVIDIA HPC
Platform with new developments that continue to open GPU computing to a wider audience of
developers and users, including automatic acceleration and tensor core programmability in
standard languages and novel libraries for compute and communication.

https://www.youtube.com/watch?v=COjvWNpxnxc

GPUs with NVIDIA CUDA architecture are usually programmed using the C language, but
NVIDIA also provides a method of programming GPUS with Fortran. NVIDIA CUDA Fortran is
distributed for free as part of NVIDIA HPC SDK (Software Development Kit) and is a set of
extensions which permit CUDA calls inside Fortran. This seminar, aimed at Fortran
programmers, will provide an introduction to GPU programming in Fortran, showing how to
convert existing Fortran codes to use GPU acceleration.

https://www.youtube.com/watch?v=hYoebR5HXmQ
https://www.youtube.com/watch?v=COjvWNpxnxc

DATAEVER CONSULTINGDATAEVER CONSULTING

Is it hard to write program for GPU?

• An algorithm developed for the CUDA architecture is actually a serial
algorithm that can be run on many different processors simultaneously,
often called a kernel.

• GPU takes this kernel and executes it in parallel by launching thousands
of instances across many processors in the GPU.

• Since most algorithms start off as serial algorithms, it’s often trivial to
port programs to the CUDA architecture.

There’s no need to completely re-architect the entire program to be multi-
threaded as you do with modern multi-core CPUs.

https://www.nvidia.com/en-us/geforce/technologies/cuda/faq/

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA compatibility

The CUDA Driver API and the CUDA Runtime are programming
interfaces to CUDA. Their version number enables developers to check
the features associated with these APIs, and decide whether an
application requires a newer (later) version than the one currently
installed.

For example:
A CUDA Driver version 1.1 will run an application (or plugins, and libraries including
the CUDA Runtime) compiled for it, and will also run the same application compiled
for the earlier version, for example, version 1.0, of the CUDA Driver. That is to say, the
CUDA Driver API is backward compatible.

However, a CUDA Driver version 1.1 will not be able to run an application that was
compiled for the later version, for example, version 2.0, of the CUDA Driver. The
CUDA Driver API is not forward compatible.

DATAEVER CONSULTINGDATAEVER CONSULTING

Specific versions

To target specific versions of NVIDIA hardware and
CUDA software, use the -arch, -code, and -gencode options of nvcc.

DATAEVER CONSULTINGDATAEVER CONSULTING

SIMT

Single Instruction Multiple Thread - SIMT

DATAEVER CONSULTINGDATAEVER CONSULTING

nvcc compiler switches

nvcc compiler driver converts .cu files into C++ for the host system

and CUDA assembly or binary instructions for the device. following are

useful for optimization

• -maxrregcount=N specifies the maximum number of registers kernels can use at a per-file

level. See Register Pressure.
--ptxas-options=-v or -Xptxas=-v lists per-kernel register, shared, and constant memory

usage.
• -ftz=true (denormalized numbers are flushed to zero)

• -prec-div=false (less precise division)

• -prec-sqrt=false (less precise square root)

• -use_fast_math compiler option of nvcc coerces every functionName() call to the

equivalent __functionName() call. This makes the code run faster

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#register-pressure

DATAEVER CONSULTINGDATAEVER CONSULTING

The output deviceQuery

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Driver Toolkit

• Running a CUDA application requires
• the system with at least one CUDA capable GPU
• a driver that is compatible with the CUDA Toolkit

• Each release of the CUDA Toolkit requires
• a minimum version of the CUDA driver.

• The CUDA driver is backward compatible
• applications compiled against a particular version of the CUDA

will continue to work on subsequent (later) driver releases.

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Toolkit and Minimum Compatible
Driver Versions

CUDA Toolkit and Minimum Compatible Driver Versions

CUDA Toolkit Linux x86_64 Driver Version Windows x86_64 Driver
Version

CUDA 11.2.1 Update 1 >=460.32.03 >=461.09

CUDA 11.2.0 GA >=460.27.03 >=460.82

CUDA 11.1.1 Update 1 >=455.32 >=456.81

CUDA 11.1 GA >=455.23 >=456.38

CUDA 11.0.3 Update 1 >= 450.51.06 >= 451.82

CUDA 11.0.2 GA >= 450.51.05 >= 451.48

CUDA 11.0.1 RC >= 450.36.06 >= 451.22

CUDA 10.2.89 >= 440.33 >= 441.22

CUDA 10.1 (10.1.105 general
release, and updates)

>= 418.39 >= 418.96

CUDA 10.0.130 >= 410.48 >= 411.31

CUDA 9.2 (9.2.148 Update 1) >= 396.37 >= 398.26

CUDA 9.2 (9.2.88) >= 396.26 >= 397.44

CUDA 9.1 (9.1.85) >= 390.46 >= 391.29

CUDA 9.0 (9.0.76) >= 384.81 >= 385.54

CUDA 8.0 (8.0.61 GA2) >= 375.26 >= 376.51

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Application Ecosystem

DATAEVER CONSULTINGDATAEVER CONSULTING

Optimized for HPC / AI

• New versions of deep learning frameworks such as
Caffe2, MXNet, CNTK, TensorFlow, and others harness
the performance of Volta to deliver faster training
times and higher multi-node training performance.

• GPU accelerated libraries such as cuDNN, cuBLAS, and
TensorRT leverage the new features of the Volta GV100
architecture to deliver higher performance for both
deep learning inference and HPC applications.

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Toolkit

• CUDA Compilers
• Nvcc
• CUDA Tools

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Tools

• A preview version of a new tool, cu++filt, is included in
this release.
• NVCC produces mangled names, appearing in PTX files, which do not

strictly follow the mangling conventions of the Itanium ABI--and are
thus not properly demangled by standard tools such as binutils'
c++filt.

• The new cu++filt utility will demangle all of these
correctly.

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Tools

NVCC
This is a reference document for nvcc, the CUDA compiler driver. nvcc accepts a range of conventional compiler options, such as for defining macros and

include/library paths, and for steering the compilation process.

CUDA-GDB
The NVIDIA tool for debugging CUDA applications running on Linux and QNX, providing developers with a mechanism for debugging CUDA applications running on

actual hardware. CUDA-GDB is an extension to the x86-64 port of GDB, the GNU Project debugger.

CUDA-MEMCHECK
CUDA-MEMCHECK is a suite of run time tools capable of precisely detecting out of bounds and misaligned memory access errors, checking device allocation leaks,

reporting hardware errors and identifying shared memory data access hazards.

Compute Sanitizer
The user guide for Compute Sanitizer.

Tools

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/index.html

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Tools

Nsight Eclipse Plugins Installation Guide
Nsight Eclipse Plugins Installation Guide

Nsight Eclipse Plugins Edition
Nsight Eclipse Plugins Edition getting started guide

Nsight Compute
The NVIDIA Nsight Compute is the next-generation interactive kernel profiler for CUDA applications. It provides detailed performance metrics and API debugging via a

user interface and command line tool.

Profiler
This is the guide to the Profiler.

CUDA Binary Utilities

Tools

https://docs.nvidia.com/cuda/nsightee-plugins-install-guide/index.html
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://docs.nvidia.com/cuda/nsight-compute/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Developer Tools

• nvprof and Visual Profiler
• CUPTI
• Nsight Compute Profiler

• The Nsight Compute can collect a large range of data on
kernel execution

• A rule in Nsight Compute is a set of instructions to the
profiler that indicate what metrics are to be gathered and
how they are to be displayed or interpreted

• Make use of rules embedded in the analysis output from
Nsight Compute

https://developer.nvidia.com/blog/analysis-driven-optimization-preparing-for-analysis-with-nvidia-nsight-compute-part-

1/?ncid=so-nvsh-46518#cid=hpc06_so-nvsh_en-us

DATAEVER CONSULTINGDATAEVER CONSULTING

Nsight Compute

• Nsight Compute - continued
• using Nsight Compute 2020.2 with appropriate path setup,

type ncu-ui. When the initial dialog box opens,
choose Quick Launch, Continue

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#quick-start

DATAEVER CONSULTINGDATAEVER CONSULTING

Nsight Compute

Application Note
CUDA for Tegra
 This application note provides an overview of NVIDIA® Tegra®

memory architecture and considerations for porting code from
a discrete GPU (dGPU) attached to an x86 system to the Tegra®
integrated GPU (iGPU).

https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html

https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html

DATAEVER CONSULTINGDATAEVER CONSULTING

Introductory and Advanced Accelerated

Computing (typical agenda by NVIDIA)
•Introduction to CUDA C
•Memory and Data Locality
•Thread Execution Efficiency
•Memory Access Performance
•Parallel Computation Patterns
•Efficient Host-Device Data Transfer
•OpenACC, MPI, OpenCL
•Unified Memory
•Dynamic Parallelism
•Multi-GPU Systems
•CUDA Library Usage

DATAEVER CONSULTING

Accelerated computing

78

DATAEVER CONSULTING

Accelerated computing

79

DATAEVER CONSULTING

Sample C CUDA code
#define N (2048*2048)

 #define THREADS_PER_BLOCK 512

 int main(void) {

 …

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }
80

DATAEVER CONSULTINGDATAEVER CONSULTING

Streaming Multiprocessors and caches
• Caches:

• L1 cache. (for reducing memory access latency).

• Shared memory. (for shared data between threads).

• Constant cache (for broadcasting of reads from a read-only
memory).

• Texture cache. (for aggregating bandwidth from texture
memory).

• Schedulers for warps. (these are for issuing instructions to
warps based on particular scheduling policies).

• A substantial number of registers. (an SM may be running a
large number of active threads at a time, so it is a must to
have registers in thousands.)

81

https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Texture_cache

DATAEVER CONSULTINGDATAEVER CONSULTING

Tensor core and CUDA core

CUDA cores:

Does a single value multiplication per one GPU clock

1 x 1 per GPU clock

TENSOR cores:

Does a matrix multiplication per one GPU clock

mat [A] x mat [B] per one GPU clock

To be more precise TENSOR core does the computation of many CUDA
cores in the same time

DATAEVER CONSULTINGDATAEVER CONSULTING

Tensor core and CUDA core

Tesla V100 and Titan V have tensor cores.

• Both GPUs have 5120 cuda cores where each core can perform up
to

• 1 single precision multiply-accumulate operation (e.g. in fp32: x += y * z)
per 1 GPU clock

• Each Tensor core perform operations on small matrices with size
4x4.

• Each tensor core can perform 1 matrix multiply-accumulate operation per
1 GPU clock.

• It multiplies two fp16 matrices 4x4 and adds the multiplication product
fp32 matrix (size: 4x4) to accumulator (that is also fp32 4x4 matrix).

• It is called mixed precision because input matrices are fp16 but
multiplication result and accumulator are fp32 matrices.

• Probably, the proper name would be just 4x4 matrix cores
• however NVIDIA decided to use "tensor cores".

https://stackoverflow.com/questions/47335027/what-is-the-difference-between-cuda-vs-tensor-
cores#:~:text=Tensor%20cores%20use%20a%20lot,changing%20the%20output%20that%20much.

https://www.techspot.com/article/2049-what-are-tensor-cores/

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA History

• In November 2006, NVIDIA introduced CUDA
• CUDA is a general purpose parallel computing platform

and programming model that leverages the parallel
compute engine in NVIDIA GPUs

DATAEVER CONSULTING

CPU + GPU
Physical Diagram

▪ CPU memory is larger, GPU memory has more
bandwidth

▪ CPU and GPU memory are usually separate,
connected by an I/O bus (traditionally PCI-e)

▪ Any data transferred between the CPU and
GPU will be handled by the I/O Bus

▪ The I/O Bus is relatively slow compared to
memory bandwidth

▪ The GPU cannot perform computation until the
data is within its memory

High

Capacity

Memory

Shared Cache

High Bandwidth
Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA thread synchronization

• CUDA provides a means to
synchronize threads within a thread -
block to ensure that all threads reach
certain point in execution before
making further progress

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA memory types

• Shared memory partitioned amongst
Thread Blocks resident on the
Streaming Multiprocessors

• Registers are partitioned amongst
Threads

DATAEVER CONSULTINGDATAEVER CONSULTING

Types of Memory

• Data stored in register memory is visible only to the thread
that wrote it and lasts only for the lifetime of that thread

• Local memory has the same scope rules as register
memory, but performs slower

• Data stored in shared memory is visible to all threads within
that block and lasts for the duration of the block. This is
invaluable because this type of memory allows for threads
to communicate and share data between one another

• Data stored in global memory is visible to all threads within
the application (including the host), and lasts for the
duration of the host allocation compared to global memory

DATAEVER CONSULTINGDATAEVER CONSULTING

Types of Memory
Constant and texture memory for special applications

Constant memory is used for data that will not change over
the course of a kernel execution and is read only

• Using constant rather than global memory can reduce the
required memory bandwidth, however, this performance
gain can only be realized when a warp of threads read the
same location.

Texture memory is another variety of read-only memory on
the device

• When all reads in a warp are physically adjacent, using
texture memory can reduce memory traffic and increase
performance compared to global memory.

DATAEVER CONSULTINGDATAEVER CONSULTING

DATAEVER CONSULTING91

A GPU is built around an
array of Streaming

Multiprocessors (SMs).

DATAEVER CONSULTING92

CUDA-Compute Unified Device Architecture
SIMT – Single Instruction Multiple Threads
TPC- Texture Processing Cluster
GPC – GPU Processing Cluster
SM - Streaming Multi Processor
SMC – SM cluster
SFU – SP Function Unit
SP – Core / sequential processorThreads from the same block

have access to a shared

memory(SM) and their
execution can be synchronized

VERY-IMPORTANT-REFERENCE-TESLA-GPU-CUDA/WHITEPAPER/volta-architecture-whitepaper.pdf

DATAEVER CONSULTING93

SM - Streaming Multi Processor
SFU – SP Function Unit
SP – Core / sequential processor

Threads from the same block

have access to a shared

memory(SM) and their
execution can be synchronized

A warp is a

collection of

threads, 32

DATAEVER CONSULTINGDATAEVER CONSULTING

Grid of Thread blocks
two dimensional

• Blocks are organized into a one-
dimensional, two-dimensional, or
three-dimensional grid of thread
blocks

• The number of thread blocks in a grid
is usually dictated by the size of the
data being processed, which typically
exceeds the number of processors in
the system

• The number of threads per block and
the number of blocks per grid
specified in the <<<...>>> syntax can
be of type int or dim3

https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html94

DATAEVER CONSULTINGDATAEVER CONSULTING

Grid of Thread blocks two dimensional

Each block within the grid can be

identified by a one-dimensional, two-

dimensional, or three-dimensional

unique index accessible within the

kernel through the built-

in blockIdx variable.

The dimension of the thread block is

accessible within the kernel through

the built-in blockDim variable.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html95

DATAEVER CONSULTING

Addition on the Device: add()

• Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• Let’s take a look at main()…

96

DATAEVER CONSULTING

Addition on the Device: add()

• Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• Let’s take a look at main()…

97

DATAEVER CONSULTING

Addition on the Device: main()
int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;

98

DATAEVER CONSULTING

Addition on the Device: main()
// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

99

DATAEVER CONSULTINGDATAEVER CONSULTING

Tensor core and CUDA core

CUDA core

• Each individual CUDA core can
perform

• one calculation per revolution of
the GPU.

https://towardsdatascience.com/what-on-earth-is-a-tensorcore-bad6208a3c62

Tensor core
• Tensor Cores are specialized

execution units designed
specifically for performing the
tensor/matrix operations that
are the core compute
function used in Deep
Learning.

• Tensor cores, can calculate
entire 4x4 matrix operation in
a clock.

DATAEVER CONSULTING

CUDA Parallel Computing Platform

Programming
 Approaches

Libraries

“Drop-in”

Acceleration

CUDA
Programming

OpenACC
Directives

Maximum Flexibility
Easily Accelerate

Apps

Development
 Environment

Nsight IDE
Linux, Mac and Windows

GPU Debugging and

Profiling

CUDA-GDB

debugger

NVIDIA Visual

Profiler

Open Compiler
 Tool Chain

Enables compiling new languages to CUDA

platform, and CUDA languages to other

architectures

© NVIDIA 2013

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Software Environment

• CUDA comes with a software environment that allows
developers to use C, C++ as high-level programming
languages.

• other languages, application programming interfaces,
or directives-based approaches are supported, such as
FORTRAN, DirectCompute, OpenACC, Open MP

DATAEVER CONSULTINGDATAEVER CONSULTING

Profiling the code for CUDA activities

cd /home/sambath/WORK-FIREFLY/HANDS-ON-LAB/CUDAC/EX14-

JACOBI/solution

nvprof ./cfd

vi *.txt

DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Software Environment

• The advent of multicore CPUs and GPUs means that
processor chips are now parallel systems

• The challenge is to develop application software that
scales up to leverage the many processor cores, and 3D
graphics applications scales leverage many GPUs

• The CUDA parallel programming model is designed to
overcome this challenge while maintaining a low
learning curve for programmers familiar with standard
programming languages such as C

DATAEVER CONSULTING

What is CUDA?

• CUDA Architecture
• Expose GPU parallelism for general-purpose computing
• Retain performance

• CUDA C/C++
• Based on industry-standard C/C++
• Small set of extensions to enable heterogeneous programming
• Straightforward APIs to manage devices, memory etc.

• This session introduces CUDA C/C++

© NVIDIA 2013

DATAEVER CONSULTING

Why Bother with Threads?

• Threads seem unnecessary
• They add a level of complexity
• What do we gain?

• Unlike parallel blocks, threads have mechanisms to:
• Communicate
• Synchronize

• To look closer, we need a new example…

	Slide 1
	Slide 2: Prerequisites
	Slide 3
	Slide 4: 3 WAYS TO PROGRAM GPU based Accelerators
	Slide 5
	Slide 6
	Slide 7: CUDA Compute Capability
	Slide 8
	Slide 9: Programmer perspective vs Hardware perspective
	Slide 10: Thread, Blocks and Warps
	Slide 11
	Slide 12: Heterogeneous Computing
	Slide 13: Heterogeneous Computing
	Slide 14: Simple Processing Flow
	Slide 15: Simple Processing Flow
	Slide 16: Simple Processing Flow
	Slide 17: Hello World!
	Slide 18: Hello World! with Device Code
	Slide 19: Hello World! with Device Code
	Slide 20: Hello World! with Device COde
	Slide 21
	Slide 22
	Slide 23: CUDA Execution Model
	Slide 24: Identifying threads using threadIdx sample code
	Slide 25
	Slide 26
	Slide 27: Hello World! with Device Code
	Slide 28: Parallel Programming in CUDA C/C++
	Slide 29: Addition on the Device
	Slide 30: Addition on the Device
	Slide 31: Addition on the Device: add()
	Slide 32: Addition on the Device: main()
	Slide 33: Addition on the Device: main()
	Slide 34
	Slide 35: Moving to Parallel
	Slide 36: Vector Addition on the Device
	Slide 37: Vector Addition on the Device
	Slide 38: Vector Addition on the Device: add()
	Slide 39: Vector Addition on the Device: main()
	Slide 40: Vector Addition on the Device: main()
	Slide 41: Review (1 of 2)
	Slide 42: Review (2 of 2)
	Slide 43
	Slide 44: CUDA Threads
	Slide 45: Vector Addition Using Threads: main()
	Slide 46: Vector Addition Using Threads: main()
	Slide 47
	Slide 48: Combining Blocks and Threads
	Slide 49: Indexing Arrays with Blocks and Threads
	Slide 50: Indexing Arrays: Example
	Slide 51: Vector Addition with Blocks and Threads
	Slide 52: Addition with Blocks and Threads: main()
	Slide 53: Addition with Blocks and Threads: main()
	Slide 54: Handling Arbitrary Vector Sizes
	Slide 56
	Slide 57: IDs and Dimensions
	Slide 58
	Slide 59
	Slide 60
	Slide 61: CUDA compatibility
	Slide 62: Specific versions
	Slide 63: SIMT
	Slide 64: nvcc compiler switches
	Slide 65: The output deviceQuery
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: Accelerated computing
	Slide 79: Accelerated computing
	Slide 80: Sample C CUDA code
	Slide 81: Streaming Multiprocessors and caches
	Slide 82: Tensor core and CUDA core
	Slide 83: Tensor core and CUDA core
	Slide 84
	Slide 85: CPU + GPU
	Slide 86: CUDA thread synchronization
	Slide 87: CUDA memory types
	Slide 88: Types of Memory
	Slide 89: Types of Memory Constant and texture memory for special applications
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: Grid of Thread blocks two dimensional
	Slide 95: Grid of Thread blocks two dimensional
	Slide 96: Addition on the Device: add()
	Slide 97: Addition on the Device: add()
	Slide 98: Addition on the Device: main()
	Slide 99: Addition on the Device: main()
	Slide 100: Tensor core and CUDA core
	Slide 101: CUDA Parallel Computing Platform
	Slide 102
	Slide 103: Profiling the code for CUDA activities
	Slide 104
	Slide 105: What is CUDA?
	Slide 106: Why Bother with Threads?

