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Prerequisites

• You (probably) need experience with C or C++

• You don’t need GPU experience

• You don’t need parallel programming experience

• You don’t need graphics experience

© NVIDIA 2013
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3 WAYS TO PROGRAM GPU based 

Accelerators

Applications
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CUDA 
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What is CUDA ?

• CUDA is the name of NVIDIA’s parallel computing 
architecture for GPUs 

• NVIDIA provides a complete toolkit for programming 
the CUDA architecture that includes the compiler, 
debugger, profiler, libraries 

• The CUDA architecture supports standard languages 
such as C, C++ and Fortran, and APIs for GPU 
Computing, such as OpenCL and DirectCompute.

https://www.nvidia.com/en-us/geforce/technologies/cuda/faq/
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CUDA compatibility platform
CUDA Driver and Toolkit
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CUDA Compute Capability

The compute capability(CC) describes the features of the h/w

It reflects the set of instructions supported by the device

also 

+ the maximum number of threads per block

+ the number of registers per multiprocessor

Higher compute capability versions are supersets of lower versions, so 

they are backward compatible.

The CC of the GPU in the device can be queried programmatically 

using deviceQuery
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Device 0: "GeForce 940MX“, , NumDevs = 1

 CUDA Driver Version / Runtime Version     11.0 / 11.0

 CUDA Capability Major/Minor version number:  5.0

 Total amount of global memory:         2004 MBytes (2101870592 bytes)

 ( 3) Multiprocessors, (128) CUDA Cores/MP:   384 CUDA Cores

 GPU Max Clock rate:              1242 MHz (1.24 GHz)

 Memory Clock rate:               1001 Mhz

 Memory Bus Width:               64-bit

 L2 Cache Size:                 1048576 bytes

 Maximum Texture Dimension Size (x,y,z)     1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)

 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

 Total amount of constant memory:        65536 bytes

 Total amount of shared memory per block:    49152 bytes

 Total number of registers available per block: 65536

 Warp size:                   32

 Maximum number of threads per multiprocessor: 2048

 Maximum number of threads per block:      1024

 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

 Max dimension size of a grid size  (x,y,z): (2147483647, 65535, 65535)

GPU configuration - Lab Environment
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Programmer perspective vs Hardware 
perspective

Programmer

view

Hardware

View
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Thread, Blocks and Warps
• A thread block is composed of ‘warps’. A warp is a set of 32 threads 

within a thread block such that all the threads in a warp execute the 
same instruction. These threads are selected serially by the SM

• Once a thread block is launched on a multiprocessor (SM), all of its 
warps are resident until their execution finishes. Thus a new block is 
not launched 

10
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Automatic Scalability with CUDA

A GPU is built around an 
array of Streaming 

Multiprocessors (SMs). 

A multithreaded program is 
partitioned into blocks of 

threads that execute 
independently from each 

other

A GPU with more multiprocessors 
will automatically execute the 

program in less time than a GPU 
with fewer multiprocessors

Multiple Thread Blocks
Can be assigned to a single 

SM
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Heterogeneous Computing

▪ Terminology:

▪ Host The CPU and its memory (host memory)

▪ Device The GPU and its memory (device memory)

Host Device

© NVIDIA 2013
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Heterogeneous Computing

© NVIDIA 2013

#include <iostream>

#include <algorithm>

using namespace std;

#define N          1024

#define RADIUS     3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

  temp[lindex - RADIUS] = in[gindex - RADIUS];

  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

  result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

void fill_ints(int *x, int n) {

 fill_n(x, n, 1);

}

int main(void) {

 int *in, *out;              // host copies of a, b, c

 int *d_in, *d_out;          // device copies of a, b, c

 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values

 in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);

 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 

 // Alloc space for device copies

 cudaMalloc((void **)&d_in,  size);

 cudaMalloc((void **)&d_out, size);

 // Copy to device

 cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU

 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, 

d_out + RADIUS);

 // Copy result back to host

 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(in); free(out);

 cudaFree(d_in); cudaFree(d_out);

 return 0;

}

serial code

parallel code

serial code

parallel function

CPU

CPU

GPU

thread

thread block

thread
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Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

PCI Bus

© NVIDIA 2013
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Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

© NVIDIA 2013

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to 
CPU memory

© NVIDIA 2013

PCI Bus
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Hello World!

int main(void) {

  printf("Hello World!\n");

  return 0;

 }

Standard C that runs on the host

NVIDIA compiler (nvcc) can be used 

to compile programs with no device 

code

Output:

$ nvcc 

hello_world.

cu

$ a.out

Hello World!

$

© NVIDIA 2013
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Hello World! with Device Code

__global__ void mykernel(void) {

 }

 int main(void) {

  mykernel<<<1,1>>>();

  printf("Hello World!\n");

  return 0;

 }

▪ Two new syntactic elements…

© NVIDIA 2013
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Hello World! with Device Code

__global__ void mykernel(void) {

}

• CUDA C/C++ keyword __global__ indicates a function that:
• Runs on the device
• Is called from host code

• nvcc separates source code into host and device components
• Device functions (e.g. mykernel()) processed by NVIDIA compiler
• Host functions (e.g. main()) processed by standard host compiler

• gcc, cl.exe

© NVIDIA 2013
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Hello World! with Device COde

mykernel<<<1,1>>>();

• Triple angle brackets mark a call from host code to device
code

• Also called a “kernel launch”
• We’ll return to the parameters (1,1) in a moment

• That’s all that is required to execute a function on the GPU!

© NVIDIA 2013
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__global__ void add(int *a, int *b, int 

*c)

   {

    *c = *a + *b;

   }

#include<stdio.h>

//int add(int *a,int *b,int *c);

int main(void)

   {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; //device copies 

of a, b, c

int size = sizeof(int);

// Allocate space for device copies of 

a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;

// Copy inputs to device

cudaMemcpy(d_a, &a, size, 

cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, 

cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, 

cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); 

cudaFree(d_c);

printf("Sum of a and b = %d \n",c);

return 0;

   }

> cat add.cu
> cat add.cu (continued)

http://add.cu/
http://add.cu/
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login to dhruv

source go2EX3-ADD

source go-compile-link
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CUDA Execution Model

• Operational view of how 
instructions are executed CUDA 
threads are executed on a specific 
computing architecture

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

built-in variable

threadIdx 

23
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Identifying threads using threadIdx
sample code

• threadIdx is a 3-component vector

• Using this threads can be identified 
using a one-dimensional, two-
dimensional, or three-
dimensional thread index, forming a 
one-dimensional, two-dimensional, or 
three-dimensional block of threads, 
called a thread block 

• This provides a natural way to invoke 
computation across the elements in a 
domain such as a vector, matrix, or 
volume 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

24
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__global__ void add(int *a,int *b,int*c)
 

   {c[threadIdx.x] = a[threadIdx.x] +        

   b[threadIdx.x];}

//------------------------------------

#define N 64

#include <stdio.h>

    int main(void) {

        int *a, *b, *c;                 

// host copies of a, b, c

        int *d_a, *d_b, *d_c;           

// device copies of a, b, c

        int size = N * sizeof(int);

        // Alloc space for device 

copies of a, b, c

        cudaMalloc((void **)&d_a, 

size);

        cudaMalloc((void **)&d_b, 

size);

        cudaMalloc((void **)&d_c, 

size);

// Alloc space for host copies of a, b, 

c and setup input values

        

EX6-PAR-THREADID.cu 
a = (int *)malloc(size);//

        b = (int *)malloc(size);// c = 

(int *)malloc(size);

        for (int x = 0; x < N; x++)

            {

             a[x]=x;

             b[x]=x;

            }

         // Copy inputs to device

        cudaMemcpy(d_a, a, size, 

cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, 

cudaMemcpyHostToDevice);              

//Launch add() kernel on GPU with N 

threads per Block

        //add<<<Number of Blocks, 

Number of Threads per Block>>>               

        add<<<1,N>>>(d_a, d_b, d_c);             

        // Copy result back to host

        cudaMemcpy(c, d_c, size, 

cudaMemcpyDeviceToHost);       

//Cleanup

free(a);free(b);free(c);

cudaFree(d_a); cudaFree(d_b); 

http://add.cu/
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login to sambath@dhruv

source go2EX6-PAR-THREADID

cat go-compile-run

source go-compile-run



DATAEVER CONSULTING

Hello World! with Device Code

__global__ void mykernel(void){

 }

 int main(void) {

  mykernel<<<1,1>>>();

  printf("Hello World!\n");

  return 0;

 }

• mykernel() does nothing, 

somewhat anticlimactic!

Output:

$ nvcc 

hello.cu

$ a.out

Hello World!

$

© NVIDIA 2013
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Parallel Programming in CUDA C/C++

• But wait… GPU computing is about 

massive parallelism!

• We need a more interesting example…

• We’ll start by adding two integers and 

build up to vector addition

a b c

© NVIDIA 2013
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Addition on the Device

• A simple kernel to add two integers

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• As before __global__ is a CUDA C/C++ keyword meaning
• add() will execute on the device
• add() will be called from the host
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Addition on the Device

• Note that we use pointers for the variables

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• add() runs on the device, so a, b and c must point to device memory

• We need to allocate memory on the GPU
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Addition on the Device: add()

• Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• Let’s take a look at main()…
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Addition on the Device: main()
int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;
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Addition on the Device: main()
// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}
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Moving to Parallel

• GPU computing is about massive parallelism
• So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< N, 1 >>>();

• Instead of executing add() once, execute N times in parallel
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Vector Addition on the Device

• With add() running in parallel we can do vector addition

• Terminology: each parallel invocation of add() is referred 
to as a block

• The set of blocks is referred to as a grid
• Each invocation can refer to its block index using blockIdx.x

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• By using blockIdx.x to index into the array, each block 
handles a different index



DATAEVER CONSULTING

Vector Addition on the Device
__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• On the device, each block can execute in 
parallel:

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1]; c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3
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Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

__global__ void add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}

• Let’s take a look at main()…
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Vector Addition on the Device: main()
#define N 512

    int main(void) {

 int *a, *b, *c;  // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

  

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size); random_ints(a, N);

 b = (int *)malloc(size); random_ints(b, N);

 c = (int *)malloc(size);
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Vector Addition on the Device: main()
// Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU with N blocks

        add<<<N,1>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }
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Review (1 of 2)

• Difference between host and device
• Host CPU
• Device GPU

• Using __global__ to declare a function as device code
• Executes on the device
• Called from the host

• Passing parameters from host code to a device function
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Review (2 of 2)

• Basic device memory management
• cudaMalloc()

• cudaMemcpy()

• cudaFree()

• Launching parallel kernels
• Launch N copies of add() with add<<<N,1>>>(…);
• Use blockIdx.x to access block index
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CUDA Threads

• Terminology: a block can be split into parallel 
threads

• Let’s change add() to use parallel threads
instead of parallel blocks

• We use threadIdx.x instead of blockIdx.x

• Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {

    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

© NVIDIA 2013
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Vector Addition Using Threads: main()
#define N 512

    int main(void) {

        int *a, *b, *c;   // host copies of a, b, c

        int *d_a, *d_b, *d_c;  // device copies of a, b, c

        int size = N * sizeof(int);

  

        // Alloc space for device copies of a, b, c

        cudaMalloc((void **)&d_a, size);

        cudaMalloc((void **)&d_b, size);

        cudaMalloc((void **)&d_c, size);

        

        // Alloc space for host copies of a, b, c and setup input values

        a = (int *)malloc(size); random_ints(a, N);

        b = (int *)malloc(size); random_ints(b, N);

        c = (int *)malloc(size);

© NVIDIA 2013
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Vector Addition Using Threads: main()
// Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU with N threads

        add<<<1,N>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }
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COMBINING THREADS
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Combining Blocks and Threads

• We’ve seen parallel vector addition using:
• Many blocks with one thread each
• One block with many threads

• Let’s adapt vector addition to use both blocks and threads

• Why? We’ll come to that…

• First let’s discuss data indexing…
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0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

• With M threads/block a unique index for each 
thread is given by:

int index = threadIdx.x + blockIdx.x * M;

• No longer as simple as using blockIdx.x and
threadIdx.x

• Consider indexing an array with one element per thread 
(8 threads/block)
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
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Indexing Arrays: Example

• Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;

           =      5      +     2      * 8;

           = 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8
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Vector Addition with Blocks and Threads

• What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads 
per block

int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel 
threads and parallel blocks

__global__ void add(int *a, int *b, int *c) {

    int index = threadIdx.x + blockIdx.x * blockDim.x;

    c[index] = a[index] + b[index];

}



DATAEVER CONSULTING

Addition with Blocks and Threads: 
main()
#define N (2048*2048)

    #define THREADS_PER_BLOCK 512

    int main(void) {

        int *a, *b, *c;   // host copies of a, b, c

        int *d_a, *d_b, *d_c;  // device copies of a, b, c

        int size = N * sizeof(int);

 

        // Alloc space for device copies of a, b, c

        cudaMalloc((void **)&d_a, size);

        cudaMalloc((void **)&d_b, size);

        cudaMalloc((void **)&d_c, size);

        // Alloc space for host copies of a, b, c and setup input values

        a = (int *)malloc(size); random_ints(a, N);

        b = (int *)malloc(size); random_ints(b, N);

        c = (int *)malloc(size);
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Addition with Blocks and Threads: 
main()

// Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU

        add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }
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Handling Arbitrary Vector Sizes

• Update the kernel launch:
add<<<(N + M-1) / M,M>>>(d_a, d_b, d_c, N);

• Typical problems are not friendly 
multiples of blockDim.x

• Avoid accessing beyond the end 
of the arrays:
__global__ void add(int *a, int *b, int *c, int n) {

    int index = threadIdx.x + blockIdx.x * blockDim.x;

    if (index < n)

        c[index] = a[index] + b[index];

}
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IDs and Dimensions

• A kernel is launched as 
a grid of blocks of 
threads

• blockIdx and threadIdx
are 3D

• We showed only one 
dimension (x)

• Built-in variables:
• threadIdx

• blockIdx

• blockDim

• gridDim
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Additional Content
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NVIDIA HPC SDK
NVIDIA HPC SDK, a comprehensive, integrated suite of compilers, 
libraries and tools for the NVIDIA HPC Platform

https://www.youtube.com/watch?v=hYoebR5HXmQ

NVIDIA HPC SDK, an integrated suite of compilers, libraries and tools for the NVIDIA HPC 
Platform with new developments that continue to open GPU computing to a wider audience of 
developers and users, including automatic acceleration and tensor core programmability in 
standard languages and novel libraries for compute and communication.

https://www.youtube.com/watch?v=COjvWNpxnxc

GPUs with NVIDIA CUDA architecture are usually programmed using the C language, but 
NVIDIA also provides a method of programming GPUS with Fortran. NVIDIA CUDA Fortran is 
distributed for free as part of NVIDIA HPC SDK (Software Development Kit) and is a set of 
extensions which permit CUDA calls inside Fortran. This seminar, aimed at Fortran 
programmers, will provide an introduction to GPU programming in Fortran, showing how to 
convert existing Fortran codes to use GPU acceleration.

https://www.youtube.com/watch?v=hYoebR5HXmQ
https://www.youtube.com/watch?v=COjvWNpxnxc
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Is it hard to write program for GPU?

• An algorithm developed for the CUDA architecture is actually a serial 
algorithm that can be run on many different processors simultaneously, 
often called a kernel. 

• GPU takes this kernel and executes it in parallel by launching thousands 
of instances across many processors in the GPU. 

• Since most algorithms start off as serial algorithms, it’s often trivial to 
port programs to the CUDA architecture. 

There’s no need to completely re-architect the entire program to be multi-
threaded as you do with modern multi-core CPUs.

https://www.nvidia.com/en-us/geforce/technologies/cuda/faq/
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CUDA compatibility

The CUDA Driver API and the CUDA Runtime are programming 
interfaces to CUDA. Their version number enables developers to check 
the features associated with these APIs, and decide whether an 
application requires a newer (later) version than the one currently 
installed.

For example:
A CUDA Driver version 1.1 will run an application (or plugins, and libraries including 
the CUDA Runtime) compiled for it, and will also run the same application compiled 
for the earlier version, for example, version 1.0, of the CUDA Driver. That is to say, the 
CUDA Driver API is backward compatible.

However, a CUDA Driver version 1.1 will not be able to run an application that was 
compiled for the later version, for example, version 2.0, of the CUDA Driver. The 
CUDA Driver API is not forward compatible. 
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Specific versions

To target specific versions of NVIDIA hardware and 
CUDA software, use the -arch, -code, and -gencode options of nvcc.
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SIMT

Single Instruction Multiple Thread - SIMT
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nvcc compiler switches

nvcc compiler driver converts .cu files into C++ for the host system 

and CUDA assembly or binary instructions for the device. following are 

useful for optimization

• -maxrregcount=N specifies the maximum number of registers kernels can use at a per-file 

level. See Register Pressure. 
--ptxas-options=-v or -Xptxas=-v lists per-kernel register, shared, and constant memory 

usage.
• -ftz=true (denormalized numbers are flushed to zero)

• -prec-div=false (less precise division)

• -prec-sqrt=false (less precise square root)

• -use_fast_math compiler option of nvcc coerces every functionName() call to the 

equivalent __functionName() call. This makes the code run faster

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#register-pressure
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The output deviceQuery
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CUDA Driver Toolkit

• Running a CUDA application requires 
• the system with at least one CUDA capable GPU 
• a driver that is compatible with the CUDA Toolkit

• Each release of the CUDA Toolkit requires 
• a minimum version of the CUDA driver. 

• The CUDA driver is backward compatible
• applications compiled against a particular version of the CUDA 

will continue to work on subsequent (later) driver releases.
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CUDA Toolkit and Minimum Compatible 
Driver Versions

CUDA Toolkit and Minimum Compatible Driver Versions

CUDA Toolkit Linux x86_64 Driver Version Windows x86_64 Driver 
Version

CUDA 11.2.1 Update 1 >=460.32.03 >=461.09

CUDA 11.2.0 GA >=460.27.03 >=460.82

CUDA 11.1.1 Update 1 >=455.32 >=456.81

CUDA 11.1 GA >=455.23 >=456.38

CUDA 11.0.3 Update 1 >= 450.51.06 >= 451.82

CUDA 11.0.2 GA >= 450.51.05 >= 451.48

CUDA 11.0.1 RC >= 450.36.06 >= 451.22

CUDA 10.2.89 >= 440.33 >= 441.22

CUDA 10.1 (10.1.105 general 
release, and updates)

>= 418.39 >= 418.96

CUDA 10.0.130 >= 410.48 >= 411.31

CUDA 9.2 (9.2.148 Update 1) >= 396.37 >= 398.26

CUDA 9.2 (9.2.88) >= 396.26 >= 397.44

CUDA 9.1 (9.1.85) >= 390.46 >= 391.29

CUDA 9.0 (9.0.76) >= 384.81 >= 385.54

CUDA 8.0 (8.0.61 GA2) >= 375.26 >= 376.51



DATAEVER CONSULTINGDATAEVER CONSULTING

CUDA Application Ecosystem
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Optimized for HPC / AI

• New versions of deep learning frameworks such as 
Caffe2, MXNet, CNTK, TensorFlow, and others harness 
the performance of Volta to deliver faster training 
times and higher multi-node training performance. 

• GPU accelerated libraries such as cuDNN, cuBLAS, and 
TensorRT leverage the new features of the Volta GV100 
architecture to deliver higher performance for both 
deep learning inference and HPC applications.
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CUDA Toolkit

• CUDA Compilers
• Nvcc
• CUDA Tools
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CUDA Tools

• A preview version of a new tool, cu++filt, is included in 
this release. 
• NVCC produces mangled names, appearing in PTX files, which do not 

strictly follow the mangling conventions of the Itanium ABI--and are 
thus not properly demangled by standard tools such as binutils' 
c++filt.

• The new cu++filt utility will demangle all of these 
correctly. 
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CUDA Tools

NVCC
This is a reference document for nvcc, the CUDA compiler driver. nvcc accepts a range of conventional compiler options, such as for defining macros and 

include/library paths, and for steering the compilation process.

CUDA-GDB
The NVIDIA tool for debugging CUDA applications running on Linux and QNX, providing developers with a mechanism for debugging CUDA applications running on 

actual hardware. CUDA-GDB is an extension to the x86-64 port of GDB, the GNU Project debugger.

CUDA-MEMCHECK
CUDA-MEMCHECK is a suite of run time tools capable of precisely detecting out of bounds and misaligned memory access errors, checking device allocation leaks, 

reporting hardware errors and identifying shared memory data access hazards.

Compute Sanitizer
The user guide for Compute Sanitizer.

Tools

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.nvidia.com/cuda/compute-sanitizer/index.html
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CUDA Tools

Nsight Eclipse Plugins Installation Guide
Nsight Eclipse Plugins Installation Guide

Nsight Eclipse Plugins Edition
Nsight Eclipse Plugins Edition getting started guide

Nsight Compute
The NVIDIA Nsight Compute is the next-generation interactive kernel profiler for CUDA applications. It provides detailed performance metrics and API debugging via a 

user interface and command line tool.

Profiler
This is the guide to the Profiler.

CUDA Binary Utilities

Tools

https://docs.nvidia.com/cuda/nsightee-plugins-install-guide/index.html
https://docs.nvidia.com/cuda/nsight-eclipse-plugins-guide/index.html
https://docs.nvidia.com/cuda/nsight-compute/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html
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CUDA Developer Tools

• nvprof and Visual Profiler
• CUPTI
• Nsight Compute Profiler

• The Nsight Compute can collect a large range of data on 
kernel execution

• A rule in Nsight Compute is a set of instructions to the 
profiler that indicate what metrics are to be gathered and 
how they are to be displayed or interpreted

• Make use of rules embedded in the analysis output from 
Nsight Compute 

https://developer.nvidia.com/blog/analysis-driven-optimization-preparing-for-analysis-with-nvidia-nsight-compute-part-

1/?ncid=so-nvsh-46518#cid=hpc06_so-nvsh_en-us
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Nsight Compute

• Nsight Compute - continued
• using Nsight Compute 2020.2 with appropriate path setup, 

type ncu-ui. When the initial dialog box opens, 
choose Quick Launch, Continue

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#quick-start
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Nsight Compute

Application Note
CUDA for Tegra
     This application note provides an overview of NVIDIA® Tegra® 

memory architecture and considerations for porting code from 
a discrete GPU (dGPU) attached to an x86 system to the Tegra® 
integrated GPU (iGPU). 

https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html

https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html
https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html
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Introductory and Advanced Accelerated 

Computing (typical agenda by NVIDIA)
•Introduction to CUDA C
•Memory and Data Locality
•Thread Execution Efficiency
•Memory Access Performance
•Parallel Computation Patterns
•Efficient Host-Device Data Transfer
•OpenACC, MPI, OpenCL
•Unified Memory
•Dynamic Parallelism
•Multi-GPU Systems
•CUDA Library Usage
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Accelerated computing

78
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Accelerated computing
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Sample C CUDA code
#define N (2048*2048)

    #define THREADS_PER_BLOCK 512

    int main(void) {

 …

 // Copy inputs to device

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

        // Launch add() kernel on GPU

        add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

        // Copy result back to host

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

        // Cleanup

        free(a); free(b); free(c);

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

        return 0;

    }
80
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Streaming Multiprocessors and caches
• Caches:

• L1 cache. (for reducing memory access latency).

• Shared memory. (for shared data between threads).

• Constant cache (for broadcasting of reads from a read-only 
memory).

• Texture cache. (for aggregating bandwidth from texture 
memory).

• Schedulers for warps. (these are for issuing instructions to 
warps based on particular scheduling policies).

• A substantial number of registers. (an SM may be running a 
large number of active threads at a time, so it is a must to 
have registers in thousands.)

81

https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/Texture_cache
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Tensor core and CUDA core

CUDA cores:

Does a single value multiplication per one GPU clock

1 x 1 per GPU clock 

TENSOR cores:

Does a matrix multiplication per one GPU clock

mat [A] x mat [B] per one GPU clock

To be more precise TENSOR core does the computation of many CUDA 
cores in the same time
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Tensor core and CUDA core

Tesla V100 and Titan V have tensor cores. 

• Both GPUs have 5120 cuda cores where each core can perform up 
to

• 1 single precision multiply-accumulate operation (e.g. in fp32: x += y * z) 
per 1 GPU clock 

• Each Tensor core perform operations on small matrices with size 
4x4. 

• Each tensor core can perform 1 matrix multiply-accumulate operation per 
1 GPU clock. 

• It multiplies two fp16 matrices 4x4 and adds the multiplication product 
fp32 matrix (size: 4x4) to accumulator (that is also fp32 4x4 matrix).

• It is called mixed precision because input matrices are fp16 but 
multiplication result and accumulator are fp32 matrices.

• Probably, the proper name would be just 4x4 matrix cores
• however NVIDIA decided to use "tensor cores".

https://stackoverflow.com/questions/47335027/what-is-the-difference-between-cuda-vs-tensor-
cores#:~:text=Tensor%20cores%20use%20a%20lot,changing%20the%20output%20that%20much.

https://www.techspot.com/article/2049-what-are-tensor-cores/
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CUDA History

• In November 2006, NVIDIA introduced CUDA
• CUDA is a general purpose parallel computing platform 

and programming model that leverages the parallel 
compute engine in NVIDIA GPUs
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CPU + GPU
Physical Diagram

▪ CPU memory is larger, GPU memory has more 
bandwidth

▪ CPU and GPU memory are usually separate, 
connected by an I/O bus (traditionally PCI-e)

▪ Any data transferred between the CPU and 
GPU will be handled by the I/O Bus

▪ The I/O Bus is relatively slow compared to 
memory bandwidth

▪ The GPU cannot perform computation until the 
data is within its memory

High 

Capacity 

Memory

Shared Cache

High Bandwidth 
Memory

Shared Cache

$ $ $ $ $ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $

IO Bus

GPUCPU
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CUDA thread synchronization

• CUDA provides a means to 
synchronize threads within a thread -
block to ensure that all threads reach 
certain point in execution before 
making further progress
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CUDA memory types

• Shared memory partitioned amongst 
Thread Blocks resident on the 
Streaming Multiprocessors

• Registers are partitioned amongst 
Threads
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Types of Memory

• Data stored in register memory is visible only to the thread 
that wrote it and lasts only for the lifetime of that thread

• Local memory has the same scope rules as register 
memory, but performs slower

• Data stored in shared memory is visible to all threads within 
that block and lasts for the duration of the block. This is 
invaluable because this type of memory allows for threads 
to communicate and share data between one another

• Data stored in global memory is visible to all threads within 
the application (including the host), and lasts for the 
duration of the host allocation compared to global memory
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Types of Memory
Constant and texture memory for special applications

Constant memory is used for data that will not change over 
the course of a kernel execution and is read only

• Using constant rather than global memory can reduce the 
required memory bandwidth, however, this performance 
gain can only be realized when a warp of threads read the 
same location.

Texture memory is another variety of read-only memory on 
the device

• When all reads in a warp are physically adjacent, using 
texture memory can reduce memory traffic and increase 
performance compared to global memory.
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A GPU is built around an 
array of Streaming 

Multiprocessors (SMs). 
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CUDA-Compute Unified Device Architecture
SIMT – Single Instruction Multiple Threads
TPC- Texture Processing Cluster
GPC – GPU Processing Cluster
SM   - Streaming Multi Processor
SMC – SM cluster
SFU – SP Function Unit
SP – Core / sequential processorThreads from the same block 

have access to a shared 

memory(SM) and their 
execution can be synchronized

VERY-IMPORTANT-REFERENCE-TESLA-GPU-CUDA/WHITEPAPER/volta-architecture-whitepaper.pdf
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SM   - Streaming Multi Processor
SFU – SP Function Unit
SP – Core / sequential processor

Threads from the same block 

have access to a shared 

memory(SM) and their 
execution can be synchronized

A warp is a 

collection of 

threads, 32
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Grid of Thread blocks
two dimensional

• Blocks are organized into a one-
dimensional, two-dimensional, or 
three-dimensional grid of thread 
blocks

• The number of thread blocks in a grid 
is usually dictated by the size of the 
data being processed, which typically 
exceeds the number of processors in 
the system

• The number of threads per block and 
the number of blocks per grid 
specified in the <<<...>>> syntax can 
be of type int or dim3

https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html94
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Grid of Thread blocks two dimensional

Each block within the grid can be 

identified by a one-dimensional, two-

dimensional, or three-dimensional 

unique index accessible within the 

kernel through the built-

in blockIdx variable. 

The dimension of the thread block is 

accessible within the kernel through 

the built-in blockDim variable. 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html95
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Addition on the Device: add()

• Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• Let’s take a look at main()…

96



DATAEVER CONSULTING

Addition on the Device: add()

• Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

*c = *a + *b;

}

• Let’s take a look at main()…

97
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Addition on the Device: main()
int main(void) {

int a, b, c; // host copies of a, b, c

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);

// Allocate space for device copies of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

// Setup input values

a = 2;

b = 7;

98
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Addition on the Device: main()
// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

return 0;

}

99
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Tensor core and CUDA core

CUDA core

• Each individual CUDA core can 
perform 

• one calculation per revolution of 
the GPU.

https://towardsdatascience.com/what-on-earth-is-a-tensorcore-bad6208a3c62

Tensor core
• Tensor Cores are specialized 

execution units designed 
specifically for performing the 
tensor/matrix operations that 
are the core compute 
function used in Deep 
Learning. 

• Tensor cores, can calculate 
entire 4x4 matrix operation in 
a clock.
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CUDA Parallel Computing Platform

Programming 
     Approaches

Libraries

“Drop-in” 

Acceleration

CUDA 
Programming 

OpenACC 
Directives

Maximum Flexibility
Easily Accelerate 

Apps

Development
    Environment

Nsight IDE
Linux, Mac and Windows

GPU Debugging and 

Profiling

CUDA-GDB 

debugger

NVIDIA Visual 

Profiler

Open Compiler
       Tool Chain

Enables compiling new languages to CUDA 

platform, and CUDA languages to other 

architectures

© NVIDIA 2013
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CUDA Software Environment

• CUDA comes with a software environment that allows 
developers to use C, C++ as high-level programming 
languages. 

• other languages, application programming interfaces, 
or directives-based approaches are supported, such as 
FORTRAN, DirectCompute, OpenACC, Open MP
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Profiling the code for CUDA activities

cd /home/sambath/WORK-FIREFLY/HANDS-ON-LAB/CUDAC/EX14-

JACOBI/solution

nvprof ./cfd

vi *.txt
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CUDA Software Environment

• The advent of multicore CPUs and GPUs means that 
processor chips are now parallel systems 

• The challenge is to develop application software that 
scales up to leverage the many processor cores, and 3D 
graphics applications scales leverage many GPUs

• The CUDA parallel programming model is designed to 
overcome this challenge while maintaining a low 
learning curve for programmers familiar with standard 
programming languages such as C
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What is CUDA?

• CUDA Architecture
• Expose GPU parallelism for general-purpose computing
• Retain performance

• CUDA C/C++
• Based on industry-standard C/C++
• Small set of extensions to enable heterogeneous programming
• Straightforward APIs to manage devices, memory etc.

• This session introduces CUDA C/C++

© NVIDIA 2013
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Why Bother with Threads?

• Threads seem unnecessary
• They add a level of complexity
• What do we gain?

• Unlike parallel blocks, threads have mechanisms to:
• Communicate
• Synchronize

• To look closer, we need a new example…
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